CISPA
Browse
cispa_all_1406.pdf (445.67 kB)

Analyzing Guarded Protocols: Better Cutoffs, More Systems, More Expressivity

Download (445.67 kB)
conference contribution
posted on 2023-11-29, 18:08 authored by Swen JacobsSwen Jacobs, Mouhammad Sakr
We study cutoff results for parameterized verification and synthesis of guarded protocols, as introduced by Emerson and Kahlon (2000). Guarded protocols describe systems of processes whose transitions are enabled or disabled depending on the existence of other processes in certain local states. Cutoff results reduce reasoning about systems with an arbitrary number of processes to systems of a determined, fixed size. Our work is based on the observation that existing cutoff results for guarded protocols are often impractical, since they scale linearly in the number of local states of processes in the system. We provide new cutoffs that scale not with the number of local states, but with the number of guards in the system, which is in many cases much smaller. Furthermore, we consider generalizations of the type of guards and of the specifications under consideration, and present results for problems that have not been known to admit cutoffs before.

History

Preferred Citation

Swen Jacobs and Mouhammad Sakr. Analyzing Guarded Protocols: Better Cutoffs, More Systems, More Expressivity. In: Verification, Model Checking and Abstract Interpretation (VMCAI). 2018.

Primary Research Area

  • Reliable Security Guarantees

Name of Conference

Verification, Model Checking and Abstract Interpretation (VMCAI)

Legacy Posted Date

2018-02-14

Open Access Type

  • Unknown

BibTeX

@inproceedings{cispa_all_1406, title = "Analyzing Guarded Protocols: Better Cutoffs, More Systems, More Expressivity", author = "Jacobs, Swen and Sakr, Mouhammad", booktitle="{Verification, Model Checking and Abstract Interpretation (VMCAI)}", year="2018", }

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC