B-Cos Networks: Alignment Is All We Need for Interpretability
conference contribution
posted on 2023-11-29, 18:21authored byMoritz Böhle, Mario FritzMario Fritz, Bernt Schiele
We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training. For this, we propose to replace the linear transforms in DNNs by our B-cos transform. As we show, a sequence (network) of such transforms induces a single linear transform that faithfully summarises the full model computations. Moreover, the B-cos transform introduces alignment pressure on the weights during optimisation. As a result, those induced linear transforms become highly interpretable and align with task-relevant features. Importantly, the B-cos transform is designed to be compatible with existing architectures and we show that it can easily be integrated into common models such as VGGs, ResNets, InceptionNets, and DenseNets, whilst maintaining similar performance on ImageNet. The resulting explanations are of high visual quality and perform well under quantitative metrics for interpretability. Code available at github.com/moboehle/B-cos.
History
Preferred Citation
Moritz Böhle, Mario Fritz and Bernt Schiele. B-Cos Networks: Alignment Is All We Need for Interpretability. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2022.
Primary Research Area
Trustworthy Information Processing
Name of Conference
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Legacy Posted Date
2022-06-17
Open Access Type
Gold
BibTeX
@inproceedings{cispa_all_3715,
title = "B-Cos Networks: Alignment Is All We Need for Interpretability",
author = "Böhle, Moritz and Fritz, Mario and Schiele, Bernt",
booktitle="{IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}",
year="2022",
}