CISPA
Browse

Exploiting Similarity for Computation and Communication-Efficient Decentralized Optimization

Download (878.79 kB)
conference contribution
posted on 2025-07-02, 21:52 authored by Yuki Takezawa, Xiaowen JiangXiaowen Jiang, Anton RodomanovAnton Rodomanov, Sebastian StichSebastian Stich
Reducing communication complexity is critical for efficient decentralized optimization. The proximal decentralized optimization (PDO) framework is particularly appealing, as methods within this framework can exploit functional similarity among nodes to reduce communication rounds. Specifically, when local functions at different nodes are similar, these methods achieve faster convergence with fewer communication steps. However, existing PDO methods often require highly accurate solutions to subproblems associated with the proximal operator, resulting in significant computational overhead. In this work, we propose the Stabilized Proximal Decentralized Optimization (SPDO) method, which achieves state-of-the-art communication and computational complexities within the PDO framework. Additionally, we refine the analysis of existing PDO methods by relaxing subproblem accuracy requirements and leveraging average functional similarity. Experimental results demonstrate that SPDO significantly outperforms existing methods.

History

Name of Conference

International Conference on Machine Learning (ICML)

CISPA Affiliation

  • Yes

Open Access Type

  • Green

BibTeX

@conference{Takezawa:Jiang:Rodomanov:Stich:2025, title = "Exploiting Similarity for Computation and Communication-Efficient Decentralized Optimization", author = "Takezawa, Yuki" AND "Jiang, Xiaowen" AND "Rodomanov, Anton" AND "Stich, Sebastian U", year = 2025, month = 7 }

Usage metrics

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC