Today’s deep learning systems deliver high performance based on end-to-end training but are notoriously hard to inspect. We argue that there are at least two reasons making inspectability challenging: (i) representations are distributed across hundreds of channels and (ii) a unifying metric quantifying inspectability is lacking. In this paper, we address both issues by proposing Semantic Bottlenecks (SB), integrated into pretrained networks, to align channel outputs with individual visual concepts and introduce the model agnostic AUiC metric to measure the alignment. We present a case study on semantic segmentation to demonstrate that SBs improve the AUiC up to four-fold over regular network outputs. We explore two types of SB-layers in this work: while concept-supervised SB-layers (SSB) offer the greatest inspectability, we show that the second type, unsupervised SBs (USB), can match the SSBs by producing one-hot encodings. Importantly, for both SB types, we can recover state of the art segmentation performance despite a drastic dimensionality reduction from 1000s of non aligned channels to 10s of semantics-aligned channels that all downstream results are based on.
History
Preferred Citation
Max Losch, Mario Fritz and Bernt Schiele. Semantic Bottlenecks: Quantifying and Improving Inspectability of Deep Representations. In: German Conference on Pattern Recognition (GCPR). 2020.
Primary Research Area
Trustworthy Information Processing
Name of Conference
German Conference on Pattern Recognition (GCPR)
Legacy Posted Date
2021-02-18
Open Access Type
Green
BibTeX
@inproceedings{cispa_all_3367,
title = "Semantic Bottlenecks: Quantifying and Improving Inspectability of Deep Representations",
author = "Losch, Max and Fritz, Mario and Schiele, Bernt",
booktitle="{German Conference on Pattern Recognition (GCPR)}",
year="2020",
}