The term “mimicry attack” has been coined in computer security and used in adversarial machine learning: an attacker observes what a machine-learning system has learned and adjusts the malicious input so that it mimics a benign input. In this paper we extend this concept to image forensics, to allow an attacker modifying a manipulated image so that it appears pristine when analyzed by a target forensic detector. Recent work has shown that such attacks can be executed against detectors based on deep networks for hiding image tampering. We do more than that: our mimicry attack can force the target detector to identify arbitrary fictitious manipulations, while hiding the true ones. Accordingly, the user of the forensic detector is completely misled. From a methodological viewpoint, the proposed attack artificially alters the detector-specific intermediate representations according to the pixel distribution in the manipulated image, by applying a gradient-based optimization process. Experimental tests on different data sets and detectors demonstrate that our approach succeeds in jointly hiding manipulated areas and arbitrarily adding new ones, favorably comparing with the state-of-the-art in the first task.
History
Primary Research Area
Empirical and Behavioral Security
Journal
Pattern Recognition Letters
Volume
179
Page Range
73-79
Publisher
Elsevier
Open Access Type
Hybrid
Sub Type
Article
BibTeX
@article{Boato:De Natale:De Stefano:Pasquini:Roli:2024,
title = "Adversarial mimicry attacks against image splicing forensics: An approach for jointly hiding manipulations and creating false detections",
author = "Boato, Giulia" AND "De Natale, Francesco GB" AND "De Stefano, Gianluca" AND "Pasquini, Cecilia" AND "Roli, Fabio",
year = 2024,
month = 3,
journal = "Pattern Recognition Letters",
pages = "73--79",
publisher = "Elsevier",
issn = "0167-8655",
doi = "10.1016/j.patrec.2024.01.023"
}