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Abstract

This paper revisits the robust overfitting phenomenon of adversarial training. Ob-
serving that models with better robust generalization performance are less certain
in predicting adversarially generated training inputs, we argue that overconfidence
in predicting adversarial examples is a potential cause. Therefore, we hypothesize
that generating less certain adversarial examples improves robust generalization,
and propose a formal definition of adversarial certainty that captures the vari-
ance of the model’s predicted logits on adversarial examples. Our theoretical
analysis of synthetic distributions characterizes the connection between adver-
sarial certainty and robust generalization. Accordingly, built upon the notion
of adversarial certainty, we develop a general method to search for models that
can generate training-time adversarial inputs with reduced certainty, while main-
taining the model’s capability in distinguishing adversarial examples. Extensive
experiments on image benchmarks demonstrate that our method effectively learns
models with consistently improved robustness and mitigates robust overfitting,
confirming the importance of generating less certain adversarial examples for
robust generalization. Our implementation is available as open-source code at:
https://github.com/TrustMLRG/AdvCertainty.

1 Introduction

Deep neural networks (DNNs) have achieved exceptional performance and have been widely adopted
in various applications, including computer vision [15], natural language processing [11] and recom-
mendation systems [8]. However, DNNs have been shown highly vulnerable to classifying inputs,
known as adversarial examples [34, 14], crafted with imperceptible perturbations that are designed
to trick the model into making wrong predictions. The prevalence of adversarial examples has raised
serious concerns regarding the robustness of DNNs, especially when deployed in security-critical
applications such as self-driving cars [5], biometric facial recognition [20] and medical diagno-
sis [12, 23]. To improve the resilience of deep neural networks against adversarial perturbations,
numerous defenses have been proposed, such as distillation [26], adversarial detection [22], feature
denoising [45], randomized smoothing [7], and semi-supervised methods [1]. Among them, adversar-
ial training [24, 48] is by far the most popular approach to train models to be robust against adversarial
perturbations. Nevertheless, even the state-of-the-art adversarial training methods [9, 27, 40] cannot
achieve satisfactory robustness performance on simple classification tasks like classifying CIFAR-10
images.

Witnessing the empirical challenges for improving model robustness, many recent works focus
on understanding the behavior of adversarial training [38, 13, 43, 49, 47]. In particular, Rice et
al. observed that test robust accuracy of intermediate models produced during adversarial training
immediately increases by a large margin after the first learning rate decay but keeps decreasing
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afterward, known as robust overfitting [28]. Robust overfitting has recently attracted a lot of attention,
since it is not an issue for standard deep learning but appears to be dominant in adversarial training.
Therefore, recognizing the fundamental cause of robust overfitting may provide important insights for
designing better ways to produce more robust models. In this paper, we revisit the robust overfitting
phenomenon and provide a potential reason for why it happens. More concretely, we observe
that models produced during adversarial training tend to be overconfident in predicting the class
labels of adversarial inputs, whereas models with better robust generalization exhibit much less
significant overconfidence issues. By introducing the notion of adversarial certainty, we provide
theoretical evidence and empirical results showing that generating less certain adversarial examples
helps produce models with improved robust generalization.

Contributions. By visualizing the label predictions of adversarial examples generated at different
epochs, we observe that adversarial training is prone to produce overconfident models, which further
induces decreased test robust accuracy. Therefore, we argue that generating less certain training-time
adversarial inputs can improve robust generalization (Section 3). To study the hypothesis more
rigorously, we first introduce a formal definition of adversarial certainty that captures the variation of
a model’s output logits in predicting adversarial examples generated by the model itself (Definition 1),
and then provide theoretical results on synthetic distributions that characterize the connection between
adversarial certainty and robust generalization (Section 4).

Built upon the definition of adversarial certainty, we propose a general method to explicitly Decrease
Adversarial Certainty (DAC) during adversarial training (Section 5). At a high level, DAC is designed
to find training-time adversarial examples with lower certainty for improving model robustness
(Equation (2)). In particular, DAC first finds the steepest descent direction of model weights to
decrease adversarial certainty, and then the newly generated adversarial examples with lower certainty
are used to optimize model robustness (Equation (3)). As the model learns from less certain adversarial
examples, the aforementioned overconfidence issue is expected to be largely mitigated. In addition,
we provide a correlation analysis between adversarial certainty and robust generalization (Figure 2(c)
in Section 5), which illustrates the importance of imposing proper constraints on model search space
for DAC. By conducting extensive experiments on image benchmark datasets, we demonstrate that
our method consistently produces more robust models when combined with various adversarial
training algorithms, and robust overfitting is significantly mitigated with the involvement of DAC
(Section 6.1). Moreover, we find that our proposed adversarial certainty has an implicit effect
on existing robustness-enhancing techniques that are even designed based on different insights
(Section 6.2). Besides, we provide a more intuitive demonstration of DAC’s efficacy (Section 6.3),
and update the explicit optimization of adversarial certainty by using a regularization term to improve
the efficiency (Section 6.4). These empirical results again indicate the importance of adversarial
certainty in understanding adversarial training and bring a further comprehension of our work.

Notation. We use lowercase boldfaced letters for vectors, and 1(·) for the indicator function. For
any x ∈ Rd and i ∈ {1, 2, . . . , d}, let xi be the i-th element of x. For any finite-sample set S , let |S|
be the cardinality of S. Let (X ,∆) be a metric space, where ∆ : X × X → R denotes a distance
metric. For any x ∈ X and ϵ ≥ 0, let Bϵ(x; ∆) = {x′ ∈ X : ∆(x′,x) ≤ ϵ} be the ball centered at
x with radius ϵ and metric ∆. When ∆ is free of context, we simply write Bϵ(x) = Bϵ(x; ∆). Let µ
be a probability distribution on X × Y , where Y denotes a label space. The empirical distribution
of µ with respect to a sample set S is defined as: µ̂S(C) =

∑
(x,y)∈S 1

(
(x, y) ∈ C

)
/|S| for any

measurable set C ⊆ X × Y . We use N (γ, σ2) to denote the Gaussian distribution with mean γ and
standard deviation σ > 0.

2 Related Work

Adversarial training is a promising defense framework for improving model robustness against
adversarial examples [14, 24, 48, 39, 36, 30, 2, 42, 18]. In particular, Goodfellow et al. proposed to
adversarially train models using perturbations generated by the fast gradient sign method (FGSM) [14].
Later on, Madry et al. incorporated perturbations produced by iterative projected gradient descent
(PGD) into adversarial training [24], which learns models with more reliable and robust performance.
Other variants of adversarial training have been proposed, which typically modify the training
objective but also use PGD attacks to approximately solve the inner maximization problem. For
instance, Zhang et al. designed TRADES, which considers optimizing the standard classification
loss while encouraging the decision boundary to be smooth [48]. Wang et al. proposed MART to
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emphasize the importance of misclassified examples during adversarial training [39]. In this work,
we demonstrate how to improve the robust generalization performance of these adversarial training
algorithms by searching for models with lower adversarial certainty.

Apart from improving adversarial training, several recent works focus on understanding robust
generalization and leveraging the gained insight to build more robust models [28, 33, 16, 6, 47, 46].
In particular, Rice et al. discovered that, unlike standard deep learning, robust overfitting is a dominant
phenomenon for adversarially-trained DNNs that hinders robust generalization, and advocated the use
of early stopping [28]. Wu et al. discovered that the flatness of weight loss landscape is an important
factor related to robust generalization, which inspires them to adversarially perturb the model
weights during adversarial training [43]. Besides, Tack et al. proposed a consistency regularization
term based on data augmentation to mitigate robust overfitting [35]. Our work complements these
methods, where we explain why overconfidence in generating adversarial examples is highly related
to robust overfitting and illustrate how to improve robust generalization by promoting less certain
perturbed inputs for adversarial training. Moreover, we are also aware of two existing works
that focus on improving the performance of adversarial training with the consideration of model
overconfidence [32, 29]. However, these works target different objectives from ours. More specifically,
Stutz et al. developed a confidence-calibrated adversarial training method that achieves better
robustness against unseen attacks [32]. Setlur et al. proposed a regularization technique to maximize
the entropy of model predictions on out-of-distribution data with larger perturbations, thus improving
model accuracy on unseen examples[29].

3 Overconfidence Compromises Robustness

In this section, we first introduce the most relevant concepts, including adversarial robustness,
adversarial training and robust overfitting. The complete introduction and discussion of these
concepts are detailed in Appendix A. Next, we visualize the label predictions of adversarially trained
models by heatmaps, and propose our hypothesis that model overconfidence is a potential cause of
the decreased robust generalization in adversarial training, where robust overfitting occurs.

Preliminaries. In this work, we focus on the most widely-studied ℓp-norm bounded perturbations,
and work with the following definition of adversarial robustness:

Rϵ(fθ;µ) = 1− E(x,y)∼µ max
x′∈Bϵ(x)

1
(
fθ(x

′) ̸= y
)
,

where fθ is an arbitrary classifier, µ denotes the underlying data distribution, and ϵ ≥ 0 captures the
adversarial strength. In practice, adversarial robustness estimated based on a set of testing examples
Rϵ(fθ; µ̂Ste

) is typically used as the evaluation metric for measuring the robust generalization of fθ.
Adversarial training aims to improve model robustness by training on adversarially-perturbed inputs
[14, 24, 48], which can be formulated as a min-max optimization problem:

min
θ∈Θ

1

|Str|
∑

(x,y)∈Str

max
x′∈Bϵ(x)

L
(
fθ,x

′, y
)
, (1)

where Θ represents the model class, Str is a set of training examples independently and identically
sampled from µ, and L denotes some convex surrogate loss such as cross-entropy. Note that PGD
attacks [24] are typically employed in adversarial training to provide approximated solutions to the
inner maximization problem in Equation (1). Nevertheless, PGD-based adversarial training and its
variants [24, 48] suffer from the robust overfitting phenomenon [28]: The test-time robustness of
intermediate models produced during the training process sharply increases after the first learning
rate decay but keeps decreasing afterward. As a result, the model produced from the last training
epoch cannot achieve a satisfactory robust generalization performance.

Heatmap Visualizations. To gain a deeper understanding of robust overfitting, we visualize the
heatmaps of the label predictions for adversarially-perturbed CIFAR-10 images. Given that robust
overfitting captures the gap of robust generalization performance with respect to models produced
at the last and best epochs, we first plot Figures 1(b) and 1(d). Since only the training process
is accessible in adversarial training, we also depict the corresponding training-time heatmaps in
Figures 1(a) and 1(c). Here, the ground-truth label represents the underlying class of clean images
and the predicted label denotes the class of adversarial examples predicted by the corresponding
model. More experimental details about Figure 1 are provided in Appendix B. Specifically, when
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Figure 1: Heatmaps of the label predictions of training- and testing-time generated adversarial
examples with respect to models produced from the last and best epochs of adversarial training.

comparing Figures 1(a) and 1(c), we find that the predictions of Last Model mainly concentrate on
the ground-truth class, which means the model is overconfident in predicting adversarial examples
generated by itself. In contrast, the heatmap of Best Model, which achieves better robust generalization
performance, depicts less overconfidence. Moreover, by comparing the same model between the
training and testing time, i.e., Figure 1(a) versus Figure 1(b) and Figure 1(c) versus Figure 1(d), we
discover that the train-test gap is significantly smaller with respect to the Best Model. We note that this
result is aligned with the classical machine learning theory: If the testing distribution deviates more
from the training distribution, standard learners will show a decreased generalization performance.

According to the above findings, we hypothesize that the overconfidence property is detrimental to
robust generalization. To be more specific, if the model cannot generate perturbed training inputs with
sufficient uncertainty, the model will not be able to well predict the less certain adversarial examples
during the inference time. Thus, mitigating model overconfidence could be a potential solution to
improve robust generalization for adversarial training. In Section 4, we will introduce a novel notion
of Adversarial Certainty, which is proposed to measure the degree of model overconfidence and is
essential for designing our DAC method to help robust generalization as demonstrated in Section 5.
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Figure 2: Model confidence in predicting training-time adversarial examples conditioned on the
ground-truth class label using different metrics: (a) label-level variance, and (b) adversarial certainty.
Figure 2(c) illustrates the correlation between adversarial certainty and robust generalization.

4 Introducing Adversarial Certainty

To numerically summarize our findings from the heatmaps, we measure the variance of the class
probabilities of the predicted labels, denoted as label-level variance, with respect to the training-time
adversarial examples for each ground-truth category in Figure 2(a). A lower label-level variance
indicates the prediction confidences of different labels are closer, which corresponds to less certainty.
More specifically, we observe that the Best Model with better robust generalization performance
exhibits a lower label-level variance than that of the Last Model, which is consistent with the results
illustrated in Figure 1. Even though the label-level variance can characterize how certain the training-
time generated adversarial examples are, such statistics are on a class level, which is not easy for
optimization. Thus, we propose the following logit-level definition, termed as adversarial certainty,
to capture the certainty of a model in classifying the adversarial examples generated by itself, where
a lower score of adversarial certainty suggests the model has a stronger ability to generate less certain
adversarial inputs:
Definition 1 (Adversarial Certainty). Let X be the input space and Y = {1, 2, . . . ,m} be the label
space. Suppose µ is the underlying distribution and S is a set of sampled examples. Let ϵ ≥ 0, ∆ be
the perturbation metric. For any fθ : X → Y , we define the adversarial certainty of fθ as:

ACϵ(fθ; µ̂S ,A) =
1

|S|
∑

(x,y)∈S

Var
(
Fθ

[
A(x; y, fθ, ϵ)

])
,

where A denotes an attack method such as PGD attacks for generating adversarial examples, Fθ :
X → Rm represents the mapping from the input space X to the logit layer of fθ, and Var(u) =∑

k∈[m] (uk − u)
2
/m, with uk and u denoting the k-th element and mean of u ∈ Rm respectively.

Different from label-level variance, adversarial certainty is an averaged sample-wise metric, which
calculates the variance of the logits returned by the model fθ for each adversarially-perturbed example
A(x; y, fθ, ϵ). Similar to Figure 2(a), we visualize the adversarial certainty of the Best Model and the
Last Model in Figure 2(b). Since predicted labels are decided by the class with the highest predicted
probabilities, adversarial certainty depicts a similar pattern to the label-level variance as expected.
Based on Definition 1, our hypothesis can then be specifically formulated as:

Decreasing adversarial certainty during adversarial training can improve robust generalization.

We note that there also exist other alternative metrics, such as confidence and entropy, which can
capture a model’s certainty in predicting adversarial examples and summarize the observations of the
heatmaps depicted in Figure 1. As will be discussed in Section 6.1, we choose logit-level variance as
the metric to define adversarial certainty, mainly because our DAC method illustrated in Section 5
always achieves the best robust generalization performance with such a choice.

Theoretical Analysis. To better understand the proposed definition of adversarial certainty, we further
study its connection with robust generalization using synthetic data distributions. Following existing
works [37, 41], we assume the following data generating procedure for any example (x, y) ∼ µ:
The binary label y is first sampled uniformly from Y = {−1,+1}, then the robust feature x1 = y
with sampling probability p and x1 = −y otherwise, while the remaining non-robust features
x2, · · · , xd+1 are sampled i.i.d. from the Gaussian distribution N (ηy, 1). Here, p ∈ (1/2, 1)
and η < 1/2 is a small positive number. Following [41], we consider linear SVM classifiers:

5



fw(x) = sgn(x1 +
x2+···+xd+1

w ) with w > 0, where sgn(·) denotes the sign operator. Subsequently,
we assume all the adversarial examples x′ are sampled from the following adversarial distribution
µadv(ε) with ε > 0: x′

1 = x1, and x′
2, · · · , x′

d+1
i.i.d.∼ N

(
(η − ε)y, 1

)
. Detailed discussions about

the configurations of this synthetic robust classification task are provided in Appendix C. The
following theorem, proven in Appendix C.1, characterizes a connection between the certainty of
adversarial examples and the robust generalization performance of an SVM classifier after a single
step of gradient update.

Theorem 1. Consider the aforementioned data distribution µ and robust classification task. Let
εte ∈ (η, 2η) and fw be an arbitrary SVM classifier with w > 0. For any ε ∈ [η − w

d , η],
ACε(fw;µ, µadv(ε)), the adversarial certainty of fw, is monotonically decreasing with respect
to ε. Suppose we conduct one-step gradient update on w using adversarial examples sampled
from µadv(ε): ŵ = w + α · ∇wR(fw;µadv(ε)), where α > 0 stands for the learning rate. Then,
R(fŵ;µadv(εte)), the robust generalization performance of fŵ, also increases as ε increases.

Note that, since we consider the adversarial data distribution µadv instead of ℓp perturbations, we now
generalize the notion of adversarial certainty and robust generalization correspondingly. Theorem 1
suggests that if we decrease the certainty of the adversarial examples sampled from µadv(ε), the
robustness of the SVM classifier fŵ will increase after one-step gradient update based on the sampled
adversarial examples, confirming the importance of less certain adversarial examples for robust
generalization. We remark that our theoretical analysis can also be extended to the typical setting of
ℓ∞-norm bounded perturbations. In Appendix C.2, we show that considering ℓ∞ perturbations is
equivalent to considering the adversarial data distribution of x′

1 = x1 − yε and x′
2, · · · , x′

d+1 i.i.d.
sampled from N ((η − ε)y, 1) for any w > 0, and derive similar results to Theorem 1.

5 Decreasing Adversarial Certainty Helps Robust Generalization

Previous sections illustrate why decreasing the certainty of adversarial inputs used for adversarial
training is beneficial for robust generalization. To further validate our hypothesis, this section
proposes a novel method to explicitly Decrease Adversarial Certainty (DAC) based on adversarial
training. In particular, DAC is designed to find less certain adversarial examples that are used to
improve robust generalization, which aims to solve the following optimization problem:

min
θ∈Θ

1

|Str|
∑

(x,y)∈Str

max
x′∈Bϵ(x)

L
(
fθ′ ,x′, y

)
, where θ′ = argmin

θ′∈C(θ)
ACϵ(fθ;Str,A). (2)

Str is the clean training dataset, A denotes a specific attack method (e.g., PGD attacks Apgd), and
C(θ) represents the feasible search region for θ′. We remark that imposing the constraint of C(θ) is
necessary, because the goal of DAC is to improve robust generalization of adversarial training, instead
of merely obtaining adversarial certainty as low as possible. Without such a constraint, minimizing
adversarial certainty will cause θ′ to significantly deviate from the initial θ. This will render the
adversarial examples generated with respect to θ′ less useful, thereby inducing a negative impact
on robust generalization (see Figure 2(c) and our correlation analysis section for more discussions
regarding the design choice of imposing such a constraint set).

Directly solving the min-max-min problem introduced in Equation (2) is challenging, due to the
non-convex nature of the optimization and the implicit definition of C(θ). Thus, we resort to gradient-
based methods for an approximate solver. To be more specific, we take the t-th iteration of adversarial
training as an example to illustrate our design of DAC. Given a set of clean training examples Str,
a specific attack method A, and a classification model fθ, our DAC method can be formulated as a
two-step optimization:

θt+0.5 = θt − λ · ∇θACϵ(fθ;Str,A)
∣∣∣
θ=θt

,

θt+1 = θt+0.5 − γ · ∇θLrob(fθ;Str,A)
∣∣∣
θ=θt+0.5

,
(3)

where λ > 0 and γ > 0 represent the step sizes of the two optimization steps, ACϵ(fθ;Str,A)
denotes the adversarial certainty of fθ with respect to Str and A, and Lrob(fθ;Str,A) can be roughly
understood as the robust loss except that the inner maximization is approximated using some attack

6



method such as Apgd. The first step in Equation (3) optimizes the adversarial certainty, which adjusts
the model parameters θt in a direction such that the generated training-time adversarial examples are
less certain, whereas the second step in Equation (3) optimizes the model’s ability in distinguishing
adversarial examples generated by the model itself as in standard adversarial training.

Correlation Analysis. Since our work aims to improve robust generalization by finding less certain
adversarial examples, it is natural to ask the following question:

Does decreasing adversarial certainty always induce better robust generalization?

Recall that in Equation (2), C(θ) defines the feasible region for optimizing adversarial certainty.
Therefore, the answer would be affirmative within this region, i.e., decreasing adversarial certainty
will increase test robust accuracy. To support the answer to this question with evidence, we conduct a
correlation analysis between adversarial certainty and robust generalization. The results are illustrated
in Figure 2(c). Specifically, we use an AT-trained model as the starting point, from which the
heatmaps in Figure 1 are derived. Then, we respectively update the model with one more epoch using
DAC with different step sizes, ranging from 0.1 to 2.0, in the θt → θt+0.5 step of Equation (2) to
decrease adversarial certainty. Finally, we measure the training-time adversarial certainty (i.e., the
blue bars) and robust test accuracy (i.e., the orange curve) of the result models. Figure 2(c) shows that
adversarial certainty keeps decreasing as the step size increases. Meanwhile, the model robustness
first keeps improving, but then decreases when the step size is beyond the value of 1.3. This result
suggests that if the model parameters lie in the feasible search region with a properly-selected step
size, lower adversarial certainty leads to higher test robust accuracy. However, when the model is
out of the feasible search region, decreasing adversarial certainty will no longer improve robust
generalization.

6 Experiments

This section examines the performance of our DAC method under ℓ∞ perturbations with ϵ = 8/255
on various model architectures, including PreActResNet-18, denoted as PRN18, and WideResNet-34,
denoted as WRN34. And we train a model for 200 epochs using SGD with a momentum of 0.9.
Besides, the initial learning rate is 0.1, and is divided by 10 at the 100-th epoch and at the 150-th
epoch. The adversarial attack used in training is PGD-10 with a step size of 1/255 for SVHN, and
2/255 for CIFAR-10 and CIFAR-100, while we utilize the commonly-used attack benchmarks of
PGD-20 [24], PGD-100 [24], CW∞ [3] and AutoAttack [10] for evaluation. In addition, we measure
the Clean performance to investigate the influence on clean images. Regarding other hyperparameters,
we follow the settings described in their original papers. In all cases, we evaluate the performance of
the last (best) model in terms of testing-time robust accuracy.

In Section 6.1, we evaluate the effectiveness of our DAC method in improving robust generalization
on three widely-used benchmark datasets: CIFAR-10 [21], CIFAR-100 [21] and SVHN [25] based
on three baseline adversarial training methods: AT [24], TRADES [48] and MART [39]. To study
the generalizability of our method, we further conduct experiments under ℓ2 perturbations, where we
set ϵ = 128/255 with a step size of 15/255 for all datasets. In Section 6.2, we associate with other
robustness-enhancing techniques to further investigate the effect of adversarial certainty in adversarial
training. Finally, we demonstrate the efficacy of DAC under a simplified one-step optimization setting
in Section 6.3, and improve the DAC efficiency in Section 6.4.

6.1 Main Results

We first evaluate the robust generalization performance of our proposed DAC method on the bench-
mark CIFAR-10 image dataset. The comparison results are depicted in Table 1, showing that DAC
significantly enhances model robustness across different adversarial attacks, such as PGD attacks [24],
CW attacks [3] and AutoAttack [10]. These results demonstrate the effectiveness of DAC, indicating
the significance of generating less certain adversarial examples for robust generalization. Besides, we
observe that although WRN34 suffers from more severe robust overfitting using baseline adversarial
training methods, it achieves more robustness improvement by our method. This suggests that
WRN34 is superior to PRN18 in terms of robust generalization with the help of DAC. In addition to
adversarial robustness, it is also worth noting the effect of DAC on clean test accuracy, which captures
the standard generalization ability of the model. Table 1 reveals that DAC consistently improves
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Table 1: Testing-time robustness (%) with/without DAC on CIFAR-10 under ℓ∞ perturbations across
different architectures and adversarial training methods. The best performance is highlighted in bold.

Architecture Method Clean PGD-20 PGD-100 CW∞ AutoAttack

PRN18

AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ DAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)

TRADES 82.10 (81.33) 47.44 (51.65) 46.95 (51.42) 46.64 (49.18) 44.99 (48.06)
+ DAC 83.18 (82.80) 49.32 (52.90) 48.81 (52.67) 48.30 (50.11) 46.40 (48.96)

MART 80.85 (78.27) 50.23 (52.28) 49.71 (52.13) 46.88 (47.83) 44.68 (46.01)
+ DAC 81.12 (79.37) 52.38 (53.25) 52.04 (53.14) 48.97 (49.25) 47.24 (47.69)

WRN34

AT 86.47 (85.86) 47.25 (55.31) 46.73 (55.00) 47.85 (54.04) 45.84 (51.94)
+ DAC 86.48 (85.10) 52.02 (57.93) 51.69 (57.68) 51.51 (54.98) 49.75 (53.33)

TRADES 83.37 (81.40) 51.51 (58.78) 51.28 (58.72) 49.26 (53.33) 47.74 (52.63)
+ DAC 85.04 (84.55) 58.97 (60.96) 58.97 (60.81) 52.79 (55.00) 51.80 (53.99)

MART 83.11 (83.30) 48.93 (58.13) 48.31 (57.75) 46.32 (52.22) 44.89 (50.31)
+ DAC 84.69 (80.09) 52.00 (59.31) 51.32 (59.26) 49.50 (53.02) 47.65 (51.48)

Table 2: Testing-time adversarial robustness (%) of AT with/without DAC/DAC_Reg under ℓ∞
perturabtions across different model architectures and benchmark datasets.

Dataset Architecture Method Clean PGD-20 PGD-100 CW∞ AutoAttack

SVHN

PRN18
AT 89.63 (88.64) 42.25 (51.00) 41.37 (50.30) 42.84 (48.19) 39.52 (46.02)
+ DAC 90.58 (89.63) 45.86 (54.42) 43.92 (53.78) 43.75 (50.15) 40.68 (48.23)
+ DAC_Reg 90.65 (90.21) 45.39 (53.06) 43.77 (52.28) 43.66 (49.64) 41.10 (47.39)

WRN34
AT 91.51 (89.72) 46.81 (53.43) 44.94 (52.77) 45.76 (50.43) 41.71 (49.50)
+ DAC 91.26 (91.83) 60.42 (67.95) 56.71 (64.85) 56.98 (65.09) 42.33 (50.42)
+ DAC_Reg 91.76 (92.13) 62.19 (65.96) 59.54 (63.68) 60.05 (63.87) 42.46 (49.95)

CIFAR-10

PRN18
AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ DAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)
+ DAC_Reg 83.78 (83.54) 45.39 (50.86) 44.87 (50.49) 44.18 (48.96) 42.41 (47.02)

WRN34
AT 86.47 (85.86) 47.25 (55.31) 46.73 (55.00) 47.85 (54.04) 45.84 (51.94)
+ DAC 86.48 (85.10) 52.02 (57.93) 51.69 (57.68) 51.51 (54.98) 49.75 (53.33)
+ DAC_Reg 85.69 (76.89) 48.81 (48.91) 47.54 (48.86) 47.55 (45.98) 44.24 (44.99)

CIFAR-100

PRN18
AT 54.58 (53.64) 20.29 (27.80) 20.00 (27.66) 20.18 (25.40) 18.52 (23.45)
+ DAC 54.85 (55.01) 22.46 (27.73) 22.19 (27.48) 21.11 (25.37) 19.09 (23.95)
+ DAC_Reg 54.67 (53.11) 21.78 (28.86) 21.50 (28.70) 20.56 (26.00) 19.29 (23.40)

WRN34
AT 57.23 (54.45) 25.64 (30.30) 25.38 (29.97) 24.09 (27.57) 22.76 (25.46)
+ DAC 58.15 (58.04) 26.08 (31.55) 25.89 (31.43) 24.77 (29.19) 23.66 (27.08)
+ DAC_Reg 57.57 (58.34) 24.46 (30.97) 24.13 (30.89) 24.04 (28.92) 22.68 (26.71)

the clean test accuracy under all experimental settings. This promotion shows that DAC could also
help models gain better generalization performance on unseen clean images even by learning from
adversarial examples. The complete results that include evaluations on more benchmark datasets
(i.e., SVHN and CIFAR-100) are depicted in Table 2 and Table 3, which show a similar pattern of
improvements.

Moreover, we empirically study the impact of DAC on the phenomenon of robust overfitting. More
specifically, we evaluate the gap of testing-time adversarial robustness between the best and the last
models. The results are shown in Figure 3(a), where DAC consistently mitigates robust overfitting
across different settings. These results indicate that decreasing adversarial certainty can successfully
mitigate robust overfitting. Besides, we also measure the adversarial certainty gap between the best
model and the last model produced by AT and AT-DAC in Figure 3(b). It can be observed that the
adversarial certainty gap of AT-DAC is significantly smaller than that of AT, which is aligned with
the closer adversarial robustness of the best model and the last model.

Comparison with Other Metrics. Recall our discussions in Section 3, we propose the notion of
adversarial certainty based on logit-level variance (Definition 1), which is further used in our design
of DAC. Noticing that confidence and entropy are also relevant metrics that can capture the model’s
overconfidence in predicting adversarial examples, we conduct a case study to illustrate why we
choose to define adversarial certainty based on variance. For ease of presentation, we only present
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Table 3: Testing-time adversarial robustness (%) of AT, TRADES and MART with/without DAC on
SVHN, CIFAR-10 and CIFAR-100 under ℓ∞ perturbations.

Dataset Method Clean PGD-20 PGD-100 CW∞ AutoAttack

SVHN

AT 89.63 (88.64) 42.25 (51.00) 41.37 (50.30) 42.84 (48.19) 39.52 (46.02)
+ DAC 90.58 (89.63) 45.86 (54.42) 43.92 (53.78) 43.75 (50.15) 40.68 (48.23)
+ DAC_Reg 90.65 (90.21) 45.39 (53.06) 43.77 (52.28) 43.66 (49.64) 41.10 (47.39)

TRADES 89.12 (87.75) 51.50 (55.19) 50.69 (54.50) 45.50 (50.32) 45.02 (48.69)
+ DAC 90.24 (89.59) 52.24 (57.09) 51.14 (56.39) 46.34 (52.22) 46.20 (50.52)
+ DAC_Reg 90.03 (89.75) 51.78 (56.10) 50.92 (54.83) 45.86 (51.35) 45.30 (49.06)

MART 89.68 (84.48) 49.07 (52.30) 48.30 (52.22) 45.48 (48.04) 44.54 (47.38)
+ DAC 88.90 (84.64) 51.04 (53.64) 50.91 (52.70) 46.94 (49.96) 46.18 (48.50)
+ DAC_Reg 90.18 (88.47) 50.94 (52.94) 49.87 (52.46) 46.32 (49.18) 45.86 (47.73)

CIFAR-10

AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ DAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)
+ DAC_Reg 83.78 (83.54) 45.39 (50.86) 44.87 (50.49) 44.18 (48.96) 42.41 (47.02)

TRADES 82.10 (81.33) 47.44 (51.65) 46.95 (51.42) 46.64 (49.18) 44.99 (48.06)
+ DAC 83.18 (82.80) 49.32 (52.90) 48.81 (52.67) 48.30 (50.11) 46.40 (48.96)
+ DAC_Reg 82.97 (82.37) 47.87 (53.33) 47.33 (51.88) 46.80 (49.68) 45.07 (48.70)

MART 80.85 (78.27) 50.23 (52.28) 49.71 (52.13) 46.88 (47.83) 44.68 (46.01)
+ DAC 81.12 (79.37) 52.38 (53.25) 52.04 (53.14) 48.97 (49.25) 47.24 (47.69)
+ DAC_Reg 80.81 (79.07) 50.35 (52.71) 50.06 (52.54) 47.50 (49.32) 45.72 (47.19)

CIFAR-100

AT 54.58 (53.64) 20.29 (27.80) 20.00 (27.66) 20.18 (25.40) 18.52 (23.45)
+ DAC 54.85 (55.01) 22.46 (27.73) 22.19 (27.48) 21.11 (25.37) 19.09 (23.95)
+ DAC_Reg 54.67 (53.11) 21.78 (28.86) 21.50 (28.70) 20.56 (26.00) 19.29 (23.40)

TRADES 55.40 (53.98) 22.40 (28.31) 22.32 (28.18) 21.42 (25.82) 20.55 (24.29)
+ DAC 56.66 (54.67) 25.54 (29.56) 25.43 (29.35) 23.32 (25.92) 22.35 (24.87)
+ DAC_Reg 54.36 (53.86) 23.16 (27.96) 23.13 (27.88) 22.34 (24.35) 21.08 (23.43)

MART 55.73 (52.48) 24.18 (27.17) 24.00 (27.12) 22.41 (24.89) 21.56 (23.06)
+ DAC 55.94 (54.23) 24.81 (28.23) 24.65 (28.13) 23.53 (25.19) 22.06 (24.00)
+ DAC_Reg 55.52 (52.77) 24.33 (27.40) 24.21 (23.41) 22.83 (25.04) 21.73 (23.28)

Table 4: Testing-time adversarial robustness (%) of AT with/without DAC on PreActResNet-18 under
ℓ2 perturabtions against PGD-20 across different benchmark datasets.

Method SVHN CIFAR-10 CIFAR-100

Best Last Best Last Best Last

AT 66.45 63.20 66.02 65.18 39.23 35.68
+ DAC 69.11 67.44 69.10 67.37 40.75 36.32

results on CIFAR-10 and AT as an illustration, where similar trends are observed among other settings.
Table 5 reports the test-time adversarial robustness of models learned using AT-DAC with different
metrics used in the definition of adversarial certainty. We can see that the last and best models
produced using our method with the variance metric achieve the best robustness performance, which
empirically supports our design choice.

ℓ2-Norm Bounded Perturbations. In the above evaluation, we focus on the ℓ∞ norm-bounded
perturbations. Meanwhile, the ℓ2 norm is also a prevalent perturbation setting in adversarial training.
Thus, in Table 4, we evaluate our method under the ℓ2 perturbations. Similarly, DAC depicts
consistent improvements in adversarial robustness on best and last epochs across different benchmark
datasets, which shows the efficacy of DAC against adversarial attacks with ℓ2 perturbations.

6.2 Effect of Adversarial Certainty on Other Robustness-Enhancing Techniques

We note that several recent works also focus on understanding robust generalization and developing
methods to improve adversarial training, including adversarial weight perturbation [43] (AWP),
and consistency regularization [35] (Consistency). More concretely, Wu et al. discovered that the
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Figure 3: (a) Robust overfitting across different methods, where “-P” and “-W” represent PRN18 and
WRN34 respectively. (b) Adversarial certainty gap with respect to AT and AT-DAC conditioned on
different ground-truth classes. (c) Training curves of adversarial certainty with respect to different
adversarial training algorithms.

Last Best

Confidence 44.40 51.14
Entropy 44.27 51.00
Variance 45.55 52.20

Table 5: Comparison results
(%) of different metrics defin-
ing adversarial certainty on
PRN18 and CIFAR-10.
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Figure 4: Adversarial certainty across different CIFAR-10 classes
with on the last and best models.

flatness of the weight loss landscape is an important factor related to robust generalization [43].
And the method of Consistency regularizes the adversarial consistency based on various data aug-
mentations [35]. However, since these methods focus on different strategies to improve robust
generalization, it is unclear whether our proposed adversarial certainty has any connection with them.
Therefore, we study the changes in adversarial certainty when involving AWP and Consistency in
adversarial training, respectively, which are shown in Figure 4. Surprisingly, we find that AWP
and Consistency, which improve the robust generalization of AT on both the last and best models,
can gain lower adversarial certainty. These findings are consistent with the idea behind our DAC
method – decreasing adversarial certainty helps robust generalization. In other words, AWP and
Consistency, which are designed toward their specified directions, will implicitly decrease adversarial
certainty. Note that, even if AWP and Consistency have influences on adversarial certainty, it does not
mean that our work proposes a similar concept to them. Specifically, adversarial certainty is derived
by observing an adversarial-training-unique phenomenon – robust overfitting, meanwhile, AWP is
inspired by the theory of weight loss landscape from standard learning and Consistency considers
the augmentation scope. Consequently, our proposed adversarial certainty is a crucial property in
adversarial training, which can either explicitly or implicitly affect robust generalization.

As AWP and Consistency can implicitly improve adversarial certainty, we then investigate the
compatibility of our DAC method with AWP and Consistency by a naive attempt. To incorporate
DAC in AWP, we add a step before weight perturbation to optimize the certainty of adversarial
examples. Then the updated intermediate model is used to generate new adversarial examples
for the following AWP optimization. Similarly, we first explicitly update the adversarial certainty
on augmented samples, and then follow the Consistency optimization. The results are shown in
Table 6. As expected, since AWP and Consistency have already implicitly decreased adversarial
certainty, even if DAC conducts an explicit optimization, our method can only gain limited benefit.
Nevertheless, our repeated trials demonstrate that the improvements, even slight, are indeed derived
from our method rather than randomness. Further, we conduct a significance test, which shows that
the improvements of robust generalization on AWP and Consistency are statistically significant, as
fully presented in Appendix D. The goal of our work is to propose adversarial certainty and clarify its
significance in adversarial training, thus better designs of involving adversarial certainty in existing
robustness-enhancing strategies are left as future work.
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Table 6: Testing-time adversarial robustness (%) of AWP and Consistency with/without DAC on
CIFAR-10 and PRN18 under ℓ∞ perturabtions.

Method Clean PGD-100 CW∞ AutoAttack

AT-AWP 83.76±0.06 (82.37±0.07) 52.71±0.26 (53.89±0.27) 51.07±0.24 (51.22±0.24) 48.75±0.23 (49.33±0.27)
+ DAC 84.07±0.13 (82.67±0.10) 54.30±0.26 (55.00±0.31) 51.76±0.25 (52.03±0.22) 49.80±0.26 (49.96±0.20)

TRADES-AWP 81.46±0.13 (81.28±0.08) 52.54±0.31 (53.55±0.26) 50.37±0.23 (50.61±0.21) 49.54±0.25 (49.92±0.23)
+ DAC 82.69±0.06 (82.85±0.08) 53.80±0.29 (54.49±0.29) 51.44±0.23 (51.53±0.21) 50.51±0.26 (50.63±0.25)

MART-AWP 78.13±0.06 (77.27±0.09) 53.06±0.25 (52.58±0.31) 49.05±0.28 (48.39±0.22) 46.53±0.22 (47.01±0.26)
+ DAC 80.03±0.06 (78.65±0.11) 54.67±0.29 (54.93±0.30) 49.58±0.25 (49.14±0.21) 47.47±0.27 (47.73±0.21)

AT-Consistency 85.28±0.06 (84.66±0.08) 55.16±0.31 (56.46±0.27) 50.81±0.23 (51.13±0.21) 48.08±0.21 (48.48±0.23)
+ DAC 85.36±0.09 (85.17±0.13) 56.31±0.26 (56.90±0.26) 51.29±0.27 (51.72±0.22) 49.00±0.21 (49.46±0.25)

TRADES-Consistency 83.68±0.12 (83.51±0.08) 52.78±0.26 (52.79±0.31) 48.85±0.21 (48.89±0.28) 47.75±0.21 (47.77±0.20)
+ DAC 84.78±0.12 (84.73±0.06) 53.48±0.27 (53.72±0.26) 49.37±0.27 (49.41±0.28) 48.15±0.21 (48.19±0.21)

MART-Consistency 78.21±0.10 (78.11±0.09) 56.31±0.29 (56.81±0.28) 47.33±0.28 (47.47±0.21) 45.53±0.27 (45.73±0.22)
+ DAC 81.91±0.06 (81.35±0.10) 58.29±0.33 (58.56±0.28) 50.08±0.27 (50.21±0.27) 48.28±0.22 (48.59±0.27)
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Figure 5: Visualization results for comparing the adversarial certainty and robust generalization of
different adversarial training methods with and without the involvement of DAC.

6.3 Further Discussion on DAC

Based on previous results, we demonstrate the benefits of involving our DAC method in adversarial
training. To more intuitively demonstrate the efficacy of our method, we empirically measure the
performance improvements derived by conducting DAC for a single epoch starting with different
models. First, we train a sequence of models by AT and TRADES for 200 epochs, and by MART for
120 epochs, respectively. For every 20 epochs, we then update the same intermediate model by one
further epoch using each of the three adversarial training methods with and without the help of DAC.
Finally, we measure the adversarial certainty and robust generalization for all the updated models.
Figure 5 summarizes the results, where the blue color represents the original method without DAC
and orange corresponds to results with our DAC. The bars show adversarial certainty and the curves
depict robust generalization. It can be seen from Figure 5 that starting with different intermediate
models, DAC can consistently gain less certain adversarial examples, from which the updated model
attains better robust generalization performance, which is aligned with our theoretical results shown
in Theorem 1. By optimizing the same model with only one epoch, these comparison results clearly
show the efficacy of DAC for adversarially-trained models.

6.4 Improvement on DAC Efficiency

To gain a better understanding of our method, we explicitly examine our proposed adversarial certainty
by involving two steps for each iteration i.e., DAC, as formulated in Equation (3). In this section,
we propose a more efficient method, denoted as DAC_Reg, by regularizing the optimization of
adversarial certainty as a term in adversarial training loss. More concretely, the optimization problem
with the additional regularizer can be cast as:

min
θ∈Θ

1

|Str|
∑

(x,y)∈Str

L
(
fθ,x

′, y
)
+ β ·ACϵ(fθ;Str,A),

where β > 0 denotes the trade-off parameter between the regularization of adversarial certainty and
the robust loss. Similar to adversarial training, the model parameters are iteratively updated using
stochastic gradient descent (SGD) with respect to the regularized robust loss. Benefiting from the
regularization design, DAC_Reg requires similar training time to the standard adversarial learning,
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which is 0.56× of that of DAC. For instance, for a PRN18 model of AT and CIFAR-10 on a single
NVIDIA A100 GPU, DAC averagely costs 143s for each training epoch while DAC_Reg costs 80s.
The comparison results of AT, TRADES and MART models on SVHN, CIFAR-10 and CIFAR-
100 datasets are shown in Table 2 and Table 3. We can see that DAC_Reg achieves comparable
performance, due to the additional penalty on adversarial certainty, which is only a bit inferior to
DAC. In a few cases, DAC could bring better and more stable improvements. For instance, when a
PRN18 model is trained on CIFAR-100 by AT, DAC_Reg can only gain the improvement on the last
epoch but not on the best epoch. In addition, we measure the adversarial certainty of a sequence of
models trained by AT, DAC and DAC_Reg, respectively, in Figure 3(c). We observe that DAC gains
the lowest adversarial certainty with a slight advantage over DAC_Reg, again indicating that lower
adversarial certainty corresponds to higher robust generalization.

7 Conclusion

We revisited the robust overfitting phenomenon of adversarial training and argued that model over-
confidence in predicting training-time adversarial examples is a potential cause. Accordingly, we
introduced the notion of adversarial certainty to capture the degree of overconfidence, then designed
to decrease adversarial certainty for models produced during adversarial training. Experiments on
image benchmarks demonstrate the effectiveness of our method, which confirms the importance of
generating less certain adversarial examples for robust generalization. Our work aims to gain a better
understanding of robust generalization by the observations from robust overfitting. We believe our
work provides a significant contribution to advancing the field of adversarial machine learning, which
might inspire practitioners to look into the important role of less certain adversarial examples when
building real-world robust systems against adversarial examples.
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Appendix

A Complete Introduction of Preliminaries

For the sake of completeness, this section presents the detailed definitions and discussions of the
preliminary concepts introduced in Section 3, including adversarial robustness, robust generalization
and adversarial training. Let (X ,∆) be a metric space. For any set C ⊆ X and any x ∈ X , we let
ΠC(x) = argminx′∈C ∆(x′,x) denote the projection of x onto C.

Adversarial Robustness. Adversarial robustness captures the classifier’s resilience to small adversar-
ial perturbations. In particular, we work with the following definition of adversarial robustness:
Definition 2 (Adversarial Robustness). Let X ⊆ Rn be input space, Y be label space, and µ be the
underlying distribution of inputs and labels. Let ∆ be a distance metric on X and ϵ ≥ 0. For any
classifier fθ : X → Y , the adversarial robustness of fθ with respect to µ, ϵ and ∆ is defined as:

Rϵ(fθ;µ) = 1− Pr
(x,y)∼µ

[
∃ x′ ∈ Bϵ(x) s.t. fθ(x′) ̸= y

]
. (4)

When ϵ = 0, R0(fθ;µ) is equivalent to the clean accuracy of fθ. In practice, the probability density
function of the underlying distribution µ is typically unknown. Instead, we only have access to a set
of test examples Ste i.i.d. sampled from µ. Thus, a classifier’s adversarial robustness is estimated
by replacing µ in Equation (4) with its empirical counterpart based on Ste. To be more specific, the
testing-time adversarial robustness of fθ with respect to Ste, ϵ and ∆ is given by:

Rϵ(fθ; µ̂Ste
) = 1− 1

|Ste|
∑

(x,y)∈Ste

max
x′∈Bϵ(x)

1
(
fθ(x

′) ̸= y
)
, (5)

where µ̂Ste denotes the empirical measure of µ based on Ste. We remark that robust generalization,
the main subject of this study, captures how well a model can classify adversarially-perturbed inputs
that are not used for training, which is essentially the testing-time adversarial robustness Rϵ(fθ; µ̂Ste).
And we write Rϵ(fθ) = Rϵ(fθ; µ̂Ste) in the following discussions when µ̂Ste is free of context.
In this work, we focus on the ℓp-norm distances as the perturbation metric ∆, since they are most
widely-used in existing literature on adversarial examples. Although ℓp distances may not best reflect
the human-perceptual similarity [31] and perturbation metrics beyond ℓp-norm such as geometrically
transformed adversarial examples [19, 44] were also considered in literature, there is still a significant
amount of interest in understanding and improving model robustness against ℓp perturbations. We
hope that our insights gained from ℓp perturbations will shed light on how to learn better robust
models for more realistic adversaries.

Adversarial Training. Among all the existing defenses against adversarial examples, adversarial
training [24, 48, 4] is most promising in producing robust models. Given a set of training examples
Str sampled from µ, adversarial training aims to solve the following min-max optimization problem:

min
θ∈Θ

LR(fθ;Str), where LR(fθ;Str) =
1

|Str|
∑

(x,y)∈Str

max
x′∈Bϵ(x)

L
(
fθ,x

′, y
)
. (6)

Here, Θ denotes the set of model parameters, and L is typically set as a convex surrogate loss such that
L
(
fθ,x, y

)
is an upper bound on the 0-1 loss 1

(
fθ(x) ̸= y

)
for any (x, y). For instance, L is set as

the cross-entropy loss in vanilla adversarial training [24], whereas the combination of a cross-entropy
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loss for clean data and a regularization term for robustness is used in TRADES [48]. In theory, if Str

well captures the underlying distribution µ and the robust loss LR(fθ;Str) is sufficiently small, then
fθ is guaranteed to achieve high adversarial robustness Rϵ(fθ;µ).

However, directly solving the min-max optimization problem (6) for non-convex models such as
deep neural networks is challenging. It is typical to resort to some good heuristic algorithm to
approximately solve the problem, especially for the inner maximization problem. In particular, Madry
et al. proposed to alternatively solve the inner maximization using an iterative projected gradient
descent method (PGD) and solve the outer minimization using SGD[24], which is regarded as the
go-to approach in the research community. We further explain its underlying mechanism below. For
any intermediate model fθ produced during adversarial training, PGD updates the (perturbed) inputs
according to the following update rule:

xs+1 = ΠBϵ(x)

(
xs + α · sgn(∇xsL(fθ,xs, y)

)
for any (x, y) and s ∈ {0, 1, . . . , S − 1}, (7)

where x0 = x, α > 0 denotes the step size and S denotes the total number of iterations. For the ease
of presentation, we use Apgd to denote PGD attacks such that for any example (x, y) and classifier
fθ, it generates x′ = xS = Apgd(x; y, fθ, ϵ) based on the update rule (7). After generating the
perturbed input for each example in a training batch, the model parameter θ is then updated by a
single SGD step with respect to L(fθ,x

′, y) for the outer minimization problem in Equation (6).

B More Details of Figures in Sections 3 and 4

This section provides all the experimental details for producing the heatmaps and the histograms
illustrated in Sections 3 and 4. Given a model fθ (e.g., Best Model and Last Model) and a set of
examples S sampled from the underlying distribution µ (e.g., CIFAR-10 training and testing datasets),
adversarial examples are generated by PGD attacks within the perturbation ball Bϵ(x) centered at x
with radius ϵ = 8/255 under the ℓ∞ perturbations, which follows the settings of generating training
samples considered in Section 6, e.g., PGD is iteratively conducted by 10 steps with the step size of
2/255. We record and plot the label predictions of the generated adversarial examples with respect to
each model as heatmaps in Figure 1.

Let HM be the m×m matrix representing the heatmap, where Y = {1, 2, . . . ,m} denotes the label
space. For any j, k ∈ Y , the (j, k)-th entry of HM with respect to fθ and S is defined as:

HMj,k =

∣∣∣∣{(x, y) ∈ S : y = j and fθ
(
Apgd(x; y, fθ, ϵ)

)
= k

}∣∣∣∣∣∣∣∣{(x, y) ∈ S : y = j
}∣∣∣∣ , (8)

where Apgd denotes PGD attacks defined by the update rule (7). More specifically, for any (x, y) ∈ S ,
the PGD attack produces the corresponding adversarial example x′ = Apgd(x; y, fθ, ϵ). Then, we
measure the predicted label ŷ = fθ(x

′). In that case, for the given training data, we could construct
(ground-truth, predicted) label pairs, simply denoted by {(y, ŷ)}. Afterward, we first cluster {(y, ŷ)}
separately by the ground-truth label, e.g., the subset of ground-truth label j includes all pairs such
that y = j (denoted by {(y, ŷ)}j), which corresponds to the rows of heatmaps. Further, for each
subset, we group it into sub-subsets separately by the predicted labels, e.g., {(y, ŷ)}j,k contains all
pairs in {(y, ŷ)}j such that ŷ = k. Consequently, the number of adversarial examples of the ground
truth label j is calculated as:

|{(y, ŷ)}j | =
∣∣∣∣{(x, y) ∈ S : y = j

}∣∣∣∣.
Meanwhile, the number of adversarial examples of ground truth label j but predicted as label k is
measured as:

|{(y, ŷ)}j,k| =
∣∣∣∣{(x, y) ∈ S : y = j and fθ

(
Apgd(x; y, fθ, ϵ)

)
= k

}∣∣∣∣,
where ŷ = fθ

(
Apgd(x; y, fθ, ϵ)

)
. Finally, we compute the (j, k)-th entry of the heatmap HMj,k as

the ratio of |{(y, ŷ)}j,k| to |{(y, ŷ)}j |, i.e., Equation (8). Following the same settings, we plot the
corresponding label-level variance and adversarial certainty in Figure 2. Specifically, we first measure
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the label-level variance of the training-time adversarial examples of the last model (Figure 1(a)) and
the best model (Figure 1(c)) conditioned on the ground-truth label, as shown in Figure 2(a). Taking
the ground-truth label j as an example, the label-level variance can be formulated as:

Var
(label)
j =

√
1

|Y|
∑
k∈Y

(HMj,k −HMj)2,

where HMj averages all HMj,k with different k, and Y = {1, 2, · · · ,m} is the label space. According
to Definition 1, we measure the adversarial certainty of the last and the best models, as illustrated in
Figure 2(b), with respect to the predicted logits of all the adversarial examples with respect to each
ground-truth label class.

C Proofs of Theoretical Results in Section 4

To gain a better understanding of the proposed definition of adversarial certainty, we further study
its connection with robust generalization using theoretical data distributions. Following existing
works [37, 41], we consider a simple binary classification task, but a further step of gradient update
is considered based on our work. First, we lay out the mathematical formulations of the important
concepts under the assumed setting that will be used for the proofs.

Data Distribution. For this binary classification task, we assume the following procedure of data
generation for any example (x, y) ∼ µ: The binary label y is uniformly sampled, i.e., y u.a.r.∼
{−1,+1}, then the robust feature x1 = y with sampling probability p and x1 = −y otherwise, while
the remaining non-robust features x2, · · · , xd=1 are sampled i.i.d. from the Gaussian distribution
N (ηy, 1). Here, p ∈ ( 12 , 1) and η < 1

2 is a small positive number. In general, the data distribution
can be formulated as:

x1 =

{
+y, w.p. p
−y, w.p. 1− p

, and x2, · · · , xd+1
i.i.d.∼ N (ηy, 1). (9)

SVM Classifier. Without bias term, an SVM classifier is used, i.e., f(x) = sgn(w1x1 + w2x2 +
· · ·+ wd+1xd+1), where sgn(·) denotes the sign operator. And for brevity, we assume w1, w2 ̸= 0
and w2 = · · · = wd+1 as x2, · · · , xd+1 are equivalent. Let w = w1

w2
, the classifier is simplified as

fw(x) = sgn(x1 +
x2+···+xd+1

w ). And without loss of generality, since x2, · · · , xd+1
i.i.d.∼ N (ηy, 1)

tend to share the same sign symbol with y, we further assume w > 0.

Adversarial Distribution. As discussed in [37] and [17], x1 is robust to perturbation but not perfect
(as p < 1), while x2, · · · , xd+1 are useful for classification but sensitive to small perturbation.
Following the setting of [37], the non-robust features are shifted towards −y by an adversarial bias
distribution ε for constructing adversarial examples. More specifically, the adversarial examples x′

are sampled from the following adversarial distribution µadv(ε) with ε > 0:

x′
1 = x1, and x′

2, · · · , x′
d+1

i.i.d.∼ N
(
(η − ε)y, 1

)
. (10)

Note that, in this task, no perturbation bound ϵ is involved, which is different from PGD-Attack.
Instead, the distribution bias ε is used to find/sample adversarial examples, which is independent of
the attacker’s budget. Besides, the goal of this work is to find less certain adversarial examples in the
training time. As ε can directly decide the distribution of adversarial examples, there is no need to
vary adversarial certainty by finding a new model status.

Robust Generalization. Since we are not using PGD-based attacks to find adversarial examples as the
empirical parts, instead of Definition 2, we involve the corresponding version of robust generalization
based on the adversarial distribution µadv(ε). Accordingly, given the model fw, the clean and robust
generalizations are separately denoted by R(fw;µ) and R(fw;µadv(ε)), which are simply written
as R0(fw) and Rε(fw) when µ and µadv(ε) are free of context:

R0(fw) = E(x,y)∼µ1
(
fw(x) = y

)
,

Rε(fw) = E(x,y)∼µadv(ε)1
(
fw(x) = y

)
.

(11)

For the sake of simplicity, let robust error Eε(fw) be the robust loss for the optimization, i.e.,
Eε(fw) = 1−Rε(fw) (12)
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The normal distribution N (0, 1) is defined by the distribution function ϕ(x) and the probability
density function Φ(x):

Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt = P
(
N (0, 1) < x

)
,

ϕ(x) =
1√
2π

e−
x2

2 = Φ′(x).

(13)

Recall that w > 0, according to [41], we have

R0(fw) = pΦ(
dη + w√

d
) + (1− p)Φ(

dη − w√
d

). (14)

Based on the distribution of non-robust features of adversarial examples, i.e., x′
i ∼ N

(
(η − ε)y, 1

)
,

we simply replace η with (η − ε) in Equation 14, ∀w > 0, we have

Rε(fw) = pΦ(
d(η − ε) + w√

d
) + (1− p)Φ(

d(η − ε)− w√
d

). (15)

Consequently, we have

Eε(fw) = 1− pΦ(
d(η − ε) + w√

d
)− (1− p)Φ(

d(η − ε)− w√
d

). (16)

Adversarial Certainty. In Section 4, we provide our definition of adversarial certainty (Definition 1)
by using the empirical counterpart of adversarial distribution. However, in the theoretical part,
adversarial distribution µadv(ε) is accessible. Thus, we use µadv(ε) to directly define the adversarial
certainty for this binary classification task. In general, adversarial certainty measures how certain
a model predicts the training-time adversarial examples, i.e., the variance of different cases of
the ground-truth and the predicted labels. Based on Equation (15), all probable cases of robust
generalization are:

(a) y = +1 and fw = +1, which corresponds to robust generalization Rε(fw);

(b) y = +1 and fw = −1, which corresponds to robust generalization 1−Rε(fw);

(c) y = −1 and fw = −1, which corresponds to robust generalization Rε(fw);

(d) y = −1 and fw = +1, which corresponds to robust generalization 1−Rε(fw).

As y u.a.r.∼ {−1,+1}, it yields Pr(y = +1) = Pr(y = −1) = 1
2 .

For simplicity, we let AC(fw; η, ε) = ACε(fw;µ, µadv(ε)) in the following discussions. According
to the above discussions, the adversarial certainty can be formulated as

AC(fw; η, ε) = Var
(
Rε(fw), y, (x

′
1, x

′
2, · · · , x′

d+1)
)

=
1

4

[(1
2
Rε(fw)−

1

2

)2
+
(1
2
Rε(fw)

)2
+
(1
2
Rε(fw)−

1

2

)2
+

(1
2
Rε(fw)

)2]
=

1

8

[(
Rε(fw)− 1

)2
+

(
Rε(fw)

)2]
=

1

8

[
2Rε

2(fw)− 2Rε(fw) + 1
]
.

(17)

Now we are ready to proof Theorem 1.

C.1 Proof of Theorem 1

Proof of Theorem 1. We start by showing the monotonicity of adversarial certainty with respect to ε.

Monotonicity of AC(fw; η, ε). According to Equation (17), we have AC(fw; η, ε) = 1
8

[
2Rε

2(fw)−

2Rε(fw) + 1
]
. Thus, the derivative to ε is

∇εAC(fw; η, ε) =
1

8

[
4Rε(fw) · ∇εRε(fw)− 2∇εRε(fw)

]
=

1

2

[
Rε(fw)−

1

2

]
· ∇εRε(fw).
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In that case, to study the monotonicity of AC(fw; η, ε), there is a need to discuss the sign of
“Rε(fw)− 1

2” and “∇εRε(fw)”.

∇εRε(fw) = −
√
dp · ϕ

(d(η − ε) + w√
d

)
−

√
d(1− p) · ϕ

(d(η − ε)− w√
d

)
. (18)

As
√
d > 0, 0 < (1 − p) < p, and ϕ(x) > 0, in Equation (18), ∇εRε(fw) < 0, i.e., Rε(fw) is

monotonically decreasing with respect to ε.

According to Equation (15), we have

Rε(fw) = p · Φ(d(η − ε) + w√
d

) + (1− p) · Φ(d(η − ε)− w√
d

)

= p ·
∫ d(η−ε)+w√

d

−∞

1√
2π

e−
t2

2 dt+ (1− p) ·
∫ d(η−ε)−w√

d

−∞

1√
2π

e−
t2

2 dt.

When ε = η, d(η − ε) = 0, thus

Rε(fw) = p ·
∫ w√

d

−∞

1√
2π

e−
t2

2 dt+ (1− p) ·
∫ −w√

d

−∞

1√
2π

e−
t2

2 dt

= p ·
∫ w√

d

−∞

1√
2π

e−
t2

2 dt+ (1− p)− (1− p) ·
∫ w√

d

−∞

1√
2π

e−
t2

2 dt

= (2p− 1) ·
∫ w√

d

−∞

1√
2π

e−
t2

2 dt+ (1− p)

> (2p− 1) · 1
2
+ (1− p)

= p− 1

2
+ 1− p =

1

2
.

Since Rε(fw) is monotonically decreasing with respect to ε, when ε ∈ (0, η], we have Rε(fw)− 1
2 >

0.

In that case,

∇εAC(fw; η, ε) =
1

2

[
Rε(fw)−

1

2

]
· ∇εRε(fw) < 0,

that is, AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0, η].

Monotonicity of Rεte(fŵ). As aforementioned, robust error Eε(fw) = 1− pΦ(d(η−ε)+w√
d

)− (1−
p)Φ(d(η−ε)−w√

d
) is used as the robust loss to optimize w. In that case, the derivative of Eε(fw) to w is

∇wEε(fw) = − p√
d
ϕ(

d(η − ε) + w√
d

) +
(1− p)√

d
ϕ(

d(η − ε)− w√
d

). (19)

Accordingly, the optimized parameters ŵ by a step size of α > 0 is derived as

ŵ = w − α · ∇wEε(fw)

= w +
αp√
d
· ϕ(d(η − ε) + w√

d
)− α(1− p)√

d
· ϕ(d(η − ε)− w√

d
).

(20)

Following the evaluation of [37], the non-robust features are shifted towards −y to mislead fŵ(·), i.e.,
εte ∈ [η, 2η], where the sampled adversarial examples follow x′

i ∼ N
(
(η − εte)y, 1

)∣∣∣
i=2,3,··· ,d+1

.

Based on ŵ and εte, the robust generalization is

Rεte(fŵ) = p · Φ
(d(η − εte) + ŵ√

d

)
+ (1− p) · Φ

(d(η − εte)− ŵ√
d

)
. (21)
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Accordingly, the derivative to ŵ is

∇ŵRεte(fŵ) =
p√
d
· ϕ

(d(η − εte) + ŵ√
d

)
− 1− p√

d
· ϕ

(d(η − εte)− ŵ√
d

)
. (22)

As εte ∈ [η, 2η], d(η − εte) ≤ 0. Thus, ϕ
(

d(η−εte)+ŵ√
d

)
≥ ϕ

(
d(η−εte)−ŵ√

d

)
. Consequently,

∇ŵRεte(fŵ) > 0 when εte ∈ [η, 2η], i.e., Rεte(fŵ) is monotonically increasing with respect
to ŵ.

Monotonicity of ŵ. Based on Equation (20),

ŵ = w +
αp√
d
· ϕ(d(η − ε) + w√

d
)− α(1− p)√

d
· ϕ(d(η − ε)− w√

d
)

= w +
αp√
2πd

· e−
(
d(η−ε)+w

)2

2d − α(1− p)√
2πd

· e−
(
d(η−ε)−w

)2

2d .

In that case, the derivative of ŵ to ε is

∇εŵ =
αp√
2πd

(
d(η − ε) + w

)
· e−

(d(η−ε)+w

)2

2d − α(1− p)√
2πd

(
d(η − ε)− w

)
e−

(
d(η−ε)−w

)2

2d . (23)

When ε ∈ [η− w
d , η], d(η−ε)+w > 0 and d(η−ε)−w ≤ 0, thus ∇εŵ > 0, i.e., ŵ is monotonically

increasing with respect to ε.

Summary. From Monotonicity of AC(fw; η, ε), we have

AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0, η].

From Monotonicity of Rεte(fŵ), we have

Rεte(fŵ) is monotonically increasing with respect to ŵ.

From Monotonicity of ŵ, we have

ŵ is monotonically increasing with respect to ε when ε ∈ [η − w

d
, η].

Consequently, it holds that given fw = sgn(x1 +
x2+···+xd+1

w ) (w > 0) and ε ∈ [η − w
d , η], lower

AC(fw; η, ε), which corresponds to a larger ε, can yields a fŵ with better Rεte(fŵ) under the testing-
time distribution bias εte ∈ [η, 2η]. This theoretical insight theoretically characterizes the connection
between adversarial certainty and robust generalization.

C.2 Extension of Theorem 1 to ℓ∞ Perturbations

Theorem 1 suggests that if we decrease the certainty of the adversarial examples sampled from
µadv(ε), the robustness of the SVM classifier fŵ will increase after one-step gradient update based
on the sampled adversarial examples. In this section, we generalize our theoretical analysis to the
typical setting of ℓ∞-norm bounded perturbations. First, we prove the following lemma to derive the
adversarial data distribution with respect to worst-case ℓ∞ perturbations under our problem setup.
Lemma 2. Consider the same data distribution and SVM classifiers as assumed in Theorem 1. For
any w > 0 and (x, y) sampled from µ, the distribution of worst-case adversarial example (x′, y)
under ℓ∞ perturbations by using the distribution bias ε is equivalent to the following adversarial data
distribution:

x′
1 = x1 − yε , and x′

2, · · · , x′
d+1

i.i.d.∼ N
(
(η − ε)y, 1

)
,

In other words, the adversarial data distribution is obtained by shifting all features of x including the
robust feature x1 by yε. Accordingly, the robust generalization can be computed as:

Rε(fw) = p · Φ
(d(η − ε) + w(1− ε)√

d

)
+ (1− p) · Φ

(d(η − ε)− w(1 + ε)√
d

)
. (24)
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Proof of Lemma 2. According to the definition of adversarial robustness in Equation (4), for any
(x, y) ∼ µ and w > 0, the worst-case adversarial example x′ under ℓ∞-perturbations by using the
distribution bias ε is defined as:

x′ = argmax
∥x̃−x∥∞≤ε

Pr
[
fw(x̃) ̸= y

]
= argmax

∥x̃−x∥∞≤ε

Pr

[
sgn

(
x̃1 +

x̃2 + . . .+ x̃d+1

w

)
̸= y

]
. (25)

Maximizing the objective in Equation (25) is equivalent to perturbing x in a direction such that
x̃1 +

x̃2+...+x̃d+1

w has an opposite sign to the ground-truth y. In the following, we are going to prove
the following claim: for any x̃ such that ∥x̃− x∥∞ ≤ ε,

Pr

[
y ·

(
x̃1 +

x̃2 + . . .+ x̃d+1

w

)
< 0

]
≤ Pr

[
y ·

(
x′
1 +

x′
2 + . . .+ x′

d+1

w

)
< 0

]
, (26)

provided that x′ is defined as x′
j = xj − y · ε for all j ∈ {1, . . . , d+ 1}.

First, we have ∥x′ − x∥∞ = ε which means that x′ is a feasible adversarial example. In addition,
we know that for any feasible x̃

y ·
(
x̃1 +

x̃2 + . . .+ x̃d+1

w

)
≥ y ·

(
x1 +

x2 + . . .+ xd+1

w

)
−

∣∣∣∣x̃1 +
x̃2 + . . .+ x̃d+1

w
−

(
x1 +

x2 + . . .+ xd+1

w

)∣∣∣∣
≥ y ·

(
x1 +

x2 + . . .+ xd+1

w

)
−

(
1 +

d

w

)
ε

= y ·
(
x′
1 +

x′
2 + . . .+ x′

d+1

w

)
.

Based on the above inequalities, we immediately know that our claim specified in Equation (26)
holds for any x. Based on the distribution of robust feature x1 and non-robust features x2, . . . , xd+1

and some simple algebra to compute the robust generalization (with respect to x′), we complete the
proof of Lemma 2.

Now we lay out the extension of Theorem 1 to ℓ∞ perturbations and its proof.
Theorem 3. Consider the aforementioned data distribution µ and robust classification task. Let εte ∈
(η, 2p− 1) and fw be an arbitrary SVM classifier with w >

√
(d+dη)2+16d−(d−dη)

2 > dη > 0. For

any ε ∈
(
0,min( dη

w+d ,
w+dη
w+d −∆ε)

]
, where ∆ε ∈ (0, w+dη

w+d ], ACε(fw;µ, µadv(ε)), the adversarial
certainty of fw, is monotonically decreasing with respect to ε. Suppose we conduct one-step gradient
update on w using adversarial examples sampled from µadv(ε): ŵ = w + α · ∇wR0(fw;µadv(ε)),
where α > 0 stands for the learning rate. Then, R0(fŵ;µadv(εte)), the robust generalization
performance of fŵ, also increases as ε increases.

Proof of Theorem 3. Similar to the proof of Theorem 1, we start by showing the monotonicity of
adversarial certainty.

Monotonicity of AC(fw; η, ε). As defined in Equation (17), the adversarial certainty in this binary
classification task is

AC(fw; η, ε) =
1

8

[
2Rε

2(fw)− 2Rε(fw) + 1
]
.

And accordingly,

∇εAC(fw; η, ε) =
1

2

[
Rε(fw)−

1

2

]
· ∇εRε(fw).

Similarly, to study the AC(fw; η, ε) monotonicity, it is necessary to discuss the sign of “Rε(fw)− 1
2”

and “∇εRε(fw)”. According to Equation 24, the derivative of Rε(fw) to ε is

∇εRε(fw) = −p(d+ w)√
d

· ϕ
(d(η − ε) + w(1− ε)√

d

)
− (1− p)(d+ w)√

d
· ϕ

(d(η − ε)− w(1 + ε)√
d

)
.

(27)
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As 0 < (1 − p) < 1
2 < p < 1, d > 0, w > 0 and ∀u, ϕ(u) > 0, it yields ∇εRε(fw) < 0. That is,

Rε(fw) is monotonically decreasing with respect to ε.

When ε = dη
w+d , we have d(η − ε) + w(1− ε) = w and d(η − ε)− w(1 + ε) = −w. Thus,

Rε(fw)
∣∣∣
ε= dη

w+d

= p · Φ
( w√

d

)
+ (1− p) · Φ

(
− w√

d

)
= p · Φ

( w√
d

)
+ (1− p)− (1− p) · Φ

( w√
d

)
= (2p− 1) · Φ

( w√
d

)
+ (1− p)

> (2p− 1) · 1
2
+ (1− p) =

1

2
.

In that case, ∀ε ∈ (0, dη
w+d ], it yields Rε(fw)− 1

2 > 0. Consequently,

∇εAC(fw; η, ε) =
1

2

[
Rε(fw)−

1

2

]
· ∇εRε(fw) < 0,

that is, AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0, dη
w+d ].

Monotonicity of Rεte(fŵ). Similarly, the robust error Eε(fw) = 1 − Rε(fw) is involved as the
robust loss to optimize w. In that case, the derivative of Eε(fw) to w is

∇wEε(fw) = −p(1− ε)√
d

· ϕ
(d(η − ε) + w(1− ε)√

d

)
+

(1− p)(1 + ε)√
d

· ϕ
(d(η − ε)− w(1 + ε)√

d

)
.

(28)

Accordingly, the optimized parameters ŵ by a step size of α > 0 is derived as

ŵ = w − α · ∇wEε(fw)

= w +
ap(1− ε)√

d
· ϕ

(d(η − ε) + w(1− ε)√
d

)
− α(1− p)(1 + ε)√

d
· ϕ

(d(η − ε)− w(1 + ε)√
d

)
.

(29)

Based on ŵ and εte, the robust generalization is

Rεte(fŵ) = p · Φ
(d(η − εte) + ŵ(1− εte)√

d

)
+ (1− p) · Φ

(d(η − εte)− ŵ(1 + εte)√
d

)
. (30)

Accordingly, the derivative to ŵ is

∇ŵRεte(fŵ) =
p(1− εte)√

d
· ϕ

(d(η − εte) + ŵ(1− εte)√
d

)
− (1− p)(1 + εte)√

d
· ϕ

(d(η − εte)− ŵ(1 + εte)√
d

)
.

(31)

As η ≤ εte ≤ (2p − 1), it yields 0 < (1−p)(1+εte)√
d

< p(1−εte)√
d

, and 0 < ϕ
(

d(η−εte)−ŵ(1+εte)√
d

)
<

ϕ
(

d(η−εte)+ŵ(1−εte)√
d

)
, thus ∇ŵRεte(fŵ) > 0. That is, Rεte(fŵ) is monotonically increasing with

respect to ŵ.

Monotonicity of ŵ. Based on Equation 29,

ŵ = w +
ap(1− ε)√

d
· ϕ

(d(η − ε) + w(1− ε)√
d

)
− α(1− p)(1 + ε)√

d
· ϕ

(d(η − ε)− w(1 + ε)√
d

)
.
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In that case, the derivative of ŵ to ε is

∇εŵ =
αp√
d

[
− ϕ

(d(η − ε) + w(1− ε)√
d

)
+ (1− ε) · ∇εϕ

(d(η − ε) + w(1− ε)√
d

)]
− α(1− p)√

d

[
ϕ
(d(η − ε)− w(1 + ε)√

d

)
+ (1 + ε) · ∇εϕ

(d(η − ε)− w(1 + ε)√
d

)]
=

αp√
d

[
− 1 +

(1− ε)(d+ w)
(
d(η − ε) + w(1− ε)

)
d

]
· ϕ

(d(η − ε) + w(1− ε)√
d

)
− α(1− p)√

d

[
1 +

(1 + ε)(d+ w)
(
d(η − ε)− w(1 + ε)

)
d

]
· ϕ

(d(η − ε)− w(1 + ε)√
d

)
=

αp

d
√
d

[(
(w + d)ε− (w + d)

)(
(w + d)ε− (w + dη)

)
− d

]
· ϕ

(d(η − ε) + w(1− ε)√
d

)
+

α(1− p)

d
√
d

[(
(w + d)ε+ (w + d)

)(
(w + d)ε+ (w − dη)

)
− d

]
· ϕ

(d(η − ε)− w(1 + ε)√
d

)
.

(32)

As dη <

√
(d+dη)2+16d−(d−dη)

2 < w, it yields
(
(w+d)ε+(w+d)

)(
(w+d)ε+(w−dη)

)
−d > 0.

As 0 < w+dη
w+d < w+d

w+d and
(
(w + d)ε − (w + d)

)(
(w + d)ε − (w + dη)

)∣∣∣
ε=0

> d, it yields

∃∆ε ∈ (0, w+dη
w+d ], such that

(
(w + d)ε − (w + d)

)(
(w + d)ε − (w + dη)

)∣∣∣
ε=w+dη

w+d −∆ε
> d. In

that case, it holds that ∀ε ∈ (0, w+dη
w+d −∆ε] , ∇εŵ > 0, that is, ŵ is monotonically increasing with

respect to ε when ε ∈ (0, w+dη
w+d −∆ε].

Summary. From Monotonicity of AC(fw; η, ε), we have

AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0,
dη

w + d
].

From Monotonicity of Rεte(fŵ), we have

Rεte(fŵ) is monotonically increasing with respect to ŵ.

From Monotonicity of ŵ, we have

ŵ is monotonically increasing with respect to ε when ε ∈ (0,
w + dη

w + d
−∆ε].

Consequently, it holds that given fw = sgn(x1 +
x2+···+xd+1

w ) (0 < dη <

√
(d+dη)2+16d−(d−dη)

2 <

w) and ε ∈ (0,min( dη
w+d ,

w+dη
w+d −∆ε)], where ∆ε ∈ (0, w+dη

w+d ], lower AC(fw; η, ε), which corre-
sponds to a larger ε, can yields a fŵ with better Rεte(fŵ) under the testing-time distribution bias
εte ∈ [η, 2p− 1].

D Significance Test for the Improvements of DAC on AWP and Consistency

As discussed in Section 6.2, our DAC method can only bring slight improvements in robust general-
ization for AWP and Consistency. Although our repeated trials have suggested that the improvements
are the consequence of DAC (see Table 6), it is helpful to provide some statistical support. Therefore,
in this section, we conduct a t-test to measure the statistical significance of our DAC method.1
Specifically, we first make a null hypothesis, i.e.,

H0 : Our DAC method does not improve the robust generalization of AWP and Consistency.

We then collect the robust generalization under AutoAttack without and with DAC from Table 6,
which are separately denoted as two samples X1 and X2. This decision is because AutoAttack is more

1 https://en.wikipedia.org/wiki/Student%27s_t-test
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powerful and comprehensive than other adversarial attacks used in our evaluation, and AutoAttack is
now the default metric for the leaderboard of adversarial defenses.2 In that case, the null hyperthesis
H0 can be informally understood as X1 ≥ X2. Next, we calculate the mean of X1 and X2, which
can be formulated as:

X̄1 =
1

n1

n1∑
i=1

X1i, and X̄2 =
1

n2

n2∑
i=1

X2i,

where n1 and n2 are the size of X1 and X2 in this case. Subsequently, the standard deviation of X1

and X2 can be calculated as:

s1 =

√√√√ 1

n1 − 1

n1∑
i=1

(
X1i − X̄1

)2
, and s2 =

√√√√ 1

n2 − 1

n2∑
i=1

(
X2i − X̄2

)2
.

Accordingly, the pooled standard deviation of the two samples is represented by s1 and s2, i.e.,

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
,

where n1+n2−2 is the total number of degrees of freedom. Given X̄1, X̄2 and sp, we have t-statistic

t =
∣∣∣ X̄1 − X̄2

sp

√
1
n1

+ 1
n2

∣∣∣.
In this case, the t-statistic is t = 2.141 and the total number of degrees of freedom n1 + n2 − 2 = 22.
By comparing to the t-Table, our t-statistic t is larger than the element of t.975 = 2.074, i.e., we have
> 95% confidence to reject the null hypothesis H0.3 In other words, our DAC method can bring
statistically significant improvements for AWP and Consistency.

2 https://robustbench.github.io/
3 https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
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