
L	�py Hell(ow): Infinite Traffic Loops at the Application Layer

Yepeng Pan
CISPA Helmholtz Center for

Information Security

Anna Ascheman
CISPA Helmholtz Center for

Information Security

Christian Rossow
CISPA Helmholtz Center for

Information Security

Abstract
Denial-of-Service (DoS) attacks have long been a persistent
threat to network infrastructures. Existing attack primitives
require attackers to continuously send traffic, such as in SYN
floods, amplification attacks, or application-layer DoS. In
contrast, we study the threat of application-layer traffic loops,
which are an almost cost-free attack primitive alternative.
Such loops exist, e.g., if two servers consider messages sent
to each other as malformed and respond with errors that again
trigger error messages. Attackers can send a single IP-spoofed
loop trigger packet to initiate an infinite loop among two
servers. But despite the severity of traffic loops, to the best of
our knowledge, they have never been studied in greater detail.

In this paper, we thus investigate the threat of application-
layer traffic loops. To this end, we propose a systematic
approach to identify loops among real servers. Our core
idea is to learn the response functions of all servers of a
given application-layer protocol, encode this knowledge into
a loop graph, and finally, traverse the graph to spot looping
server pairs. Using the proposed method, we examined traffic
loops among servers running both popular (DNS, NTP, and
TFTP) and legacy (Daytime, Time, Active Users, Chargen,
QOTD, and Echo) UDP protocols and confirmed the preva-
lence of traffic loops. In total, we identified approximately
296k servers in IPv4 vulnerable to traffic loops, providing
attackers the opportunity to abuse billions of loop pairs.

1 Introduction

Traffic loops at the network layer are a widely-known occa-
sional configuration issue that attackers can abuse to launch se-
vere Denial-of-Service (DoS) attacks that overload networks
and hosts. Such routing loops typically occur due to acciden-
tal router misconfigurations. Fortunately, the pioneers of the
internet realized the problem of network loops early on and
stopped it by design. When standardizing the Internet Proto-
col (IP), they included a dedicated IP header field to prevent
packets from looping indefinitely. Any IP router decrements

Attacker

DNS
Server A

DNS
Server B

Server Failure with
Question Field

. . .

Figure 1: Example DNS traffic loop. The attacker (left) sends
a single IP-spoofed, malformed DNS message to a server
(middle), impersonating the IP address owner (right). This
loop-trigger message combines a server failure with a valid
question field, which server A resolves and replies to B. Server
B then crafts a payload that preserves the server failure opcode
and question field but strips the answer field. To this point, a
packet loop is formed between the two servers.

the value of this Time-to-Live (TTL) header field when it for-
wards a packet to the next hop. By discarding packets with
TTL=0, routers enforce that IP packets do not spin infinite
cycles — mitigating loops at the network layer.

In this paper, we show that traffic loops also exist at the
application layer, irrespective of network-layer defenses. Sur-
prisingly, app-layer loops have gained little attention except
for an isolated past vulnerability in NTP in 2009 [38] or re-
ports concerning only two legacy protocols [16]. Application-
layer loops arise if two network services indefinitely respond
to each other’s application-layer messages. Such loops remain
unnoticed by IP’s TTL mechanism and are hence infinite.
Without losing generality, imagine two DNS resolvers that re-
spond with an error message when receiving an error message
as input. If an error as input creates an error as output, and
a second system behaves the same, these two systems will
keep sending error messages back and forth — indefinitely.
Attackers can invoke such endless loops by sending a single
IP-spoofed packet. Worse, they can spawn loops in parallel.
Figure 1 shows an example loop we identified among real
DNS servers. In this example, an attacker can cause a loop
among two faulty DNS servers by injecting a single DNS
server failure message. Once injected, the servers send DNS

error messages back and forth — indefinitely.
Application-layer loops are an overwhelming attack primi-

tive that can be abused for, e.g., launching link-flooding DoS
attacks, overloading networks that host looping servers, ex-
hausting computation resources of looping servers themselves,
or economically damaging ASes due to increased upstream
costs. Worse, attackers do not require large attack bandwidth
to abuse loops. In fact, sending a single IP-spoofed packet
creates an infinite loop among two servers. Moreover, attack-
ers do not require any control of the looping servers or their
configurations; all it requires is finding pairs of servers that
loop. Application-layer loops thus provide the attackers with
several benefits over existing DoS attack primitives, where
attackers either have to continuously send traffic (e.g., SYN
floods [17], amplification DDoS [8, 10, 14, 22, 24, 27]) and/or
have to control configurations of the abused infrastructure
(e.g., DNS-based attack chains that require partial control of
the DNS zones [15, 36]). We thus believe that it is of utmost
importance to systematically study the overall threat.

To this end, we devise a scalable methodology to identify
application-layer loop internet infrastructures. We bootstrap
our loop search with a list of known services of a given UDP-
based application-layer protocol from past network scans.
We then send a few hand-crafted discovery probes to these
known services. These protocol-specific probes reflect pro-
tocol messages for which we do not expect answers, such
as protocol-specific error messages or semantically invalid
requests and responses. Seeing that many services unexpect-
edly do respond, we cluster their responses to abstract away
syntactical differences while retaining semantic similarities.
Next, we learn the response function per server, allowing us
to reliably predict which response a server would send after
receiving a given input. We then use these mappings to form
a loop graph that encodes which response a server returns
when receiving a given response as input. We traverse the loop
graph to find potential loop pairs, i.e., two hosts that will send
messages forth and back indefinitely. Finally, we randomly
sample from the potential loop pairs and use a rate-limited
proxy to verify their loop behavior in practice.

We apply this methodology to study loops in three popu-
lar UDP-based application-layer protocols (DNS, NTP, and
TFTP) and six legacy protocols for which we suspect loop
issues by design (Chargen, QOTD, Echo, Time, Daytime, and
Active Users). We find that loops at the application layer are
more common than intuitively expected. In fact, they seem
to be a widespread problem of server implementations for all
of the studied protocols. In DNS, NTP, and TFTP alone, we
find 249K “loop hosts,” i.e., hosts that attackers can abuse
to construct a loop when being paired with other loop hosts.
We empirically validate that this corresponds to over 5.3B
potential “loop host pairs” of which we can probabilistically
confirm 87.9%, affecting 7,318 ASes (9.7%) globally. In ad-
dition, we find 123.6k servers running legacy protocols, cor-
responding to 2.0B potential “loop host pairs,” and we can

probabilistically confirm that 78.1% of them can be abused.
Unfortunately, we empirically validate that loops even exist
across protocols, rendering them extremely hard to mitigate
on a per-protocol basis alone.

To better understand mitigation options, we study the rea-
sons for traffic loops. First and foremost, we find that respond-
ing to error messages or random data can quickly turn into
looping behaviors. Second, some loops are protocol-specific,
such as middlebox-induced loops in DNS, where servers react
to well-formed DNS responses with another DNS response.
Finally, legacy protocols such as Chargen and QOTD send
responses irrespective of the payload they receive, entirely
lacking a notion of requests and responses. This shows that
standardization bodies and developers must be more careful
about traffic loops. We were surprised to see that few stan-
dards explicitly mitigate traffic loops. Even if standards im-
plicitly describe patterns of how to avoid loops (e.g., “do not
reply to error messages when receiving an error message”),
implementations either do not follow such optional advice, or
the standard is not explicit enough (e.g., it does not specify
how to react upon invalid messages such as random data).
To increase awareness of this threat, we performed a large-
scale disclosure operation, reaching out to the standardization
experts and developers of the affected implementations.

2 Background and Related Work

Traffic Loops Traffic loops are a strong primitive for per-
forming DoS attacks. Known classes of loops either operate at
the network layer or are application-layer attacks that require
(partial) control over service configurations.

Nosyk et al. found that network-layer routing loops can
be used as mega amplifiers for DNS-based DoS attacks [37].
In such a routing loop, which is mostly caused by misconfig-
urations and inconsistent implementations of routing proto-
cols, a packet circulates through a sequence of routers until
its TTL decays. Given that a DNS censorship middlebox
injects a DNS response upon observing a censored DNS
query [39], a single DNS query can trigger repetitive answers
from the middlebox if the middlebox is involved in routing
loops. This way, an attacker can use routing loops to generate
and send a huge amount of traffic to a target victim. Plenty
of research [21, 30, 41] focuses on effectively identifying and
eliminating routing loops.

However, there is little research on application-layer loops,
and existing research is tailored to certain protocols and re-
quires partial attacker control over configurations. For exam-
ple, TsuNAME [36] is an app-layer loop attack against DNS
servers. The attack exploits cyclic dependencies in DNS zone
files. Two authoritative DNS resolvers with misconfigured
zone files can refer to each other for resolving, and thus, a trig-
gering query from the attacker can start a traffic loop between
the two servers. Another application-layer loop attack abuses
CNAME records [15]. By manipulating the CNAME records

on two authoritative name servers, an attacker can chain the
CNAME records on two name servers to form an aliasing
loop. However, to leverage these two attacks, attackers need
to set up desired zone configurations or domain records on
target servers. In [18], Chen et al. introduced a DoS attack
against Content Delivery Networks (CDNs), where malicious
customers can create forwarding loops among or inside CDNs
by manipulating the forwarding process.

Existing traffic loops thus either rely on temporal network
configuration errors or are tailored to certain application-layer
protocols and require a high degree of attacker control.
In contrast, the loops that we identify do not require any
privileges or network errors and generalize to several
application-layer protocols.

Related DoS Attack Primitives Once found, the traffic
loops that we present in the paper can be abused as an al-
most infinitely-amplifying attack primitive (offering more
severe amplification than previously known amplification at-
tacks) and assist attackers in performing link-flooding attacks
without requiring control over the endpoints involved in the
attack. We discuss both primitives in the following.

Amplification attacks exploit network services that operate
application-layer protocols with known amplification vec-
tors [11, 33, 40]. For example, by spoofing the IP address
of victim hosts and sending floods of query packets to DNS
servers, an attacker can generate and direct significant attack
traffic in the form of DNS responses to the victim. In amplifi-
cation attacks, an attacker needs to continuously send floods
of IP-spoofed packets to maintain the attack traffic — in con-
trast to needing only a single trigger message in traffic loops.
Other than DNS [24], protocols such as NTP [27], SSDP [10],
BitTorrent [8], and SNMP [22] can also be abused in such
attacks. Knowing the threats of amplification attacks, the
security community has also discussed mitigations. Source
address validation (SAV) [28] is considered the best practice,
as amplification attacks require an attacker to send IP-spoofed
packets. However, a 2019 study [34] showed that over 21%
of analyzed ASes do not deploy such outbound filtering.

Link-flooding attacks aim to overload entire network links,
not just single hosts. The Coremelt attack [43] is an exam-
ple in which thousands of attacker-controlled bots exchange
low amounts of traffic to overload a network link they share.
Similarly, the Crossfire attack commands bots to send traf-
fic to public servers instead of forming pairs of bots [26].
But to coordinate either link-flooding attack, attackers re-
quire bots, i.e., compromised hosts. In contrast, loops abuse
existing, non-compromised servers, which readily provide
billions of loopable server pairs. An attacker can selectively
pick loopable servers on victim links and trigger application-
layer loops between them to launch a link-flooding attack.
Such attacks can only be mitigated by SDN-based mitiga-
tions [25, 32, 44, 46].

A's response set, SA

ra1

ra2

...
ran

Server A

B's response set, SB

rb1

rb2

...
rbn

Server B

A(rbn)

p1

p2

pn

Figure 2: Example response functions of servers.

3 Methodology

Before discussing the details of our methodology, we first
present the definition of a loop pair and formulate the research
problem of finding loop pairs. Next, to show the underlying
challenges, we discuss the limitations of a naïve straw-man
approach. Finally, we introduce our methodology in detail.

3.1 Loop DoS Problem Formulation
Consider two UDP servers A and B. Upon receiving a packet
pi, A and B deterministically respond to a packet pi us-
ing response functions A(pi) = rai and B(pi) = rbi, respec-
tively. The response functions map a vector of incoming
packets P = p1, p2, · · ·, pn to server-specific response sets,
i.e., SA = {(p1,ra1),(p2,ra2), · · ·,(pn,ran)} for server A and
SB = {(p1,rb1),(p2,rb2), · · ·,(pn,rbn)} for B. Figure 2 illus-
trates this mapping. The mapping can now be used to find
loops at the application layer. In the most simple case, when
A(rbi) = ram and B(ram) = rbi, we have B(A(rbi)) = rbi.
That is, whenever A sends ram to B, B will respond with rbi
to A, which in turn sends ram, and so on — an endless loop.
The attacker can trigger this loop by sending an IP-spoofed
rbi packet to A, forging the identity of B as the packet source
(or alternatively: send rbm to B in the name of A).

But loops may also exist in more complex settings that
involve multiple response conversions. To generalize, when
there are B(· · ·A(B(A(rbi)))) = rbi (or A(· · ·B(A(B(rai)))) =
rai), a loop between server A and B is possible and we call
server A and server B a loop pair. This generalization allows
us to find loop pairs for which B(A(rbi)) 6= rbi. For exam-
ple, consider A(rbi) = ra j, B(ra j) = rbk, A(rbk) = ral , and
B(ral) = rbi — completing a loop after four response types.

In the following sections, we outline methodologies for
how to identify possible loop pairs among servers. Basically,
we need to learn the servers’ response sets (e.g., SA) or their
response function (e.g., A(p)). The difficulty lies in the fact
that the number of server pairs is quite large and the input
space infinite — thus calling for scalable methods.

3.2 Straw-Man Approach for Finding Loops
Given two UDP servers, A and B, a naïve approach to identify
possible loop pairs could operate as follows:

1. To learn the response sets (SA and SB) of servers A and
B, we could generate random packets and collect A’s and
B’s responses to these generated packets respectively.

2. We could then send all packets rai ∈ SA to server B and
all packets rbm ∈ SB to server A to learn the response
function A(p) where p ∈ {rb1,rb2, · · ·,rbn} and B(p)
where p ∈ {ra1,ra2, · · ·,ran}.

3. If we find B(rai) = rbm and A(rbm) = rai, we could
assume that servers A and B form a loop pair.

However, this straw-man solution suffers from three sub-
stantial issues that underline some of the core challenges of
discovering loop pairs in a scalable and precise manner.

First, the methodology does not scale. Learning all possible
packets in a real server’s response set requires us to send a
large number of random probes to real servers. Identifying
loops among servers by sending all packets in each server’s
response set to all servers again (step (2)) induces an imprac-
tical number of probes when searching for loop pairs among
millions of servers. With n servers and m probe packets, the
straw-man approach may require us to send up to n∗m probes
to each server, quickly demonstrating that this does not scale
for n in the range of millions and large m due to the random
nature of the naïve packet generation.

Second, the automated and random nature of the packet
exploration phase (step (1)) — often the basis for software
vulnerability search [9] — may trigger undesired bugs, crash,
or otherwise interfere with the underlying server software. As
we are neither interested in triggering such bugs nor find it
ethical to explore them in live systems, we have to resort to
less intrusive ways of exploring the response functions.

Third, the response matching phase (step (3)) may miss
loops as it searches for exact payload matches only. However,
in many network protocols, two non-identical packets may
share their semantic meaning and thus what they trigger. For
example, consider two DNS responses that contain different
IP addresses in two otherwise-identical responses (e.g., due to
load balancing). If the response behavior is not influenced by
the concrete IP addresses in the input packet but rather based
on the type of the DNS message and the number of DNS
resource records, the naïve search would falsely neglect a
loop. More formally, consider a case where B(rai) = rbm and
A(rbm) = ra′i, where rai ≈ ra′i but rai 6= ra′i. If ra′i is semanti-
cally equivalent to rai and thus triggers the same behavior at
B, it is a viable loop trigger but would have been dismissed
by the naïve search that searches for strict equality.

3.3 Methodology Sketch
Considering the constraints of the straw-man approach, we
now provide a methodology to identify loop pairs that tackles
the aforementioned challenges. For the sake of concreteness,
without losing generality, we describe our methodology with

the help of a running example of finding loops among DNS
resolvers. But our chosen methodology generalizes also to
other UDP-based application-layer protocols. Figure 3 illus-
trates our five-step methodology when applied to DNS. In
general, given a list of IP addresses of a given UDP protocol,
we conduct the following five steps to find loops:
1. Discovery Probes (Section 3.4): For a given UDP
application-layer protocol, we send hand-crafted discovery
probe packets to all servers to learn their responses. The col-
lected responses represent potential entry gates to loops. With
reference to our running example (Figure 3), we choose to
send two discovery probes: a non-empty, valid DNS response
with a type A record and a DNS format error response. They
trigger six responses from servers A–D.
2. Response Clustering (Section 3.5): We then group the re-
sponses according to their semantics, abstracting away poten-
tial syntactical differences. Each cluster (ideally) represents
an equivalence class of the semantics of the responses in the
cluster. In our running example, the six syntactically different
responses can be grouped into four semantic clusters.
3. Loop Probes (Section 3.6): Next, we sample loop probe
packets from the identified clusters and send them to all
servers. That is, we choose random representatives from each
semantic equivalence class and learn how all servers react
to them. The responses to these loop probes are clustered in
the same way as in the previous step. In our running exam-
ple, we randomly pick one probe from each cluster. We then
send all these sampled probes to A–D and receive one to four
responses from each server.
4. Loop Graph (Section 3.7): After learning the server re-
sponse sets, we build a loop graph that shows which servers
(edges) reply with which response when receiving an in-
put (nodes). We then search for cycles in this loop graph,
which hint at loop pairs. In our DNS example, we can im-
mediately spot a trivial self-loop for cluster c1 among hosts
B and C (in blue, dotted). But the loop graph also reveals
more complex cycles. For example, hosts A and D form
a cycle using the response sequence {c1,c2,c3,c4,c1}, i.e.,
c1→ c2→ c3→ c4→ c1 (in green, dashed).
5. Loop Verification (Section 3.8): Finally, we verify loop
pairs, e.g., (A,C), identified in the loop graph via a proxy
server. In our DNS example, to verify loop pairs identified
in the cycle {c1,c2,c1}, the proxy stands as a person-in-the-
middle between server A and server C. Then, the proxy uses
its own IP to send a packet SB[0] ∈ c1 (see Figure 3 (c)) to
host A and passively delegates further packets between the
two hosts. If the proxy observes sufficient traffic between the
two hosts, host A and host C are confirmed as a loop pair.

3.4 Discovery Probes

The first step in discovering loops is to learn the response set
of real servers. To this end, we carefully craft hand-vetted dis-
covery probes. In order to trigger diverse responses, we design

Scanner

Hand-Vetted Discovery Probes:
1. DNS RSP domain.com 7.7.7.7
2. DNS RSP Format Error

DB

Discovery Probes

Responses to Discovery Probe 1:
A: DNS RSP txid=0, qr=1, opcode=0, rcode=4, Not Implemented
B: DNS RSP txid=5, qr=1, opcode=0, rcode=0, an=2.2.2.2

C: DNS RSP txid=6, qr=1, opcode=0, rcode=0, an=2.2.2.3
D: DNS RSP txid=0, qr=1, opcode=0, rcode=1, Format Error

Responses to Discovery Probe 2:
A: DNS RSP txid=0, qr=1, opcode=0, rcode=2, Server Failure
B: DNS RSP txid=0, qr=1, opcode=0, rcode=2, Server Failure
C: None Response
D: None Response

A

B

C

D

Servers

(a) Discovery Probe: Two probes sent to 4 servers.

A

B

C

D

Servers
A's response set, SA

SA[0]: DNS RSP txid=0, qr=1, opcode=0, rcode=4, Not Implemented
SA[1]: DNS RSP txid=0, qr=1, opcode=0, rcode=2, Server Failure

B's response set, SB

SB[0]: DNS RSP txid=5, qr=1, opcode=0, rcode=0, an=2.2.2.2
SB[1]: DNS RSP txid=0, qr=1, opcode=0, rcode=2, Server Failure

C's response set, SC

SC[0]: DNS RSP txid=6, qr=1, opcode=0, rcode=0, an=2.2.2.3
SC[1]: None Response

D's response set, SD

SD[0]: DNS RSP txid=0, qr=1, opcode=0, rcode=1, Format Error
SD[1]: None Response

Cluster
c1={SB[0],SC[0]}

Cluster
c2={SA[0]}

Cluster
c3={SD[0]}

Cluster
c4={SA[1],SB[1]}

Response Clusters

(b) Response Clustering: Group all responses in 4 clusters.

Scanner

Sampled Responses from Clusters
1. SB[0] from c1

2. SA[0] from c2

3. SD[0] from c3

4. SA[1] from c4

DB

A

B

C

D

Servers
Loop Probe

Responses to sampled response in c1:
A: response falls in cluster c2 B: response falls in cluster c1

C: response falls in cluster c1 D: response falls in cluster c3

Responses to sampled response in c2:
A: None response B: None response
C: response falls in cluster c1 D: response falls in cluster c3

Responses to sampled response in c3:
A: response falls in cluster c4 B: response falls in cluster c4

C: None response D: None response

Responses to sampled response in c4:
A: None response B: None response
C: None response D: response falls in cluster c1

(c) Loop Probe: Confront each server with samples from each cluster.

Cluster
c1

Cluster
c2

Cluster
c3

Cluster
c4IPs = {B,C}

Loop Verify

Proxy
Server

Port 1

.

.

.

Port i
.
.

Sampling

Potential Loop Pairs in Cycle {c1,c2,c1}

Pair 1
Server A

Pair 1
Server C

Pair i
Server X

Pair i
Server X'

Initial Packet
from cluster c1

Initial Packet
from cluster c1

Loop Graph

Cycles Loop Pair Legend

{c1 , c1} (B,C)

{c1 , c2 , c1} (A,C)

{c1 , c2 , c3 , c4 , c1} (A,D)

(d) Loop Graph & Loop Verify: Derive (left) and test (right) loop pairs.

Figure 3: Example of our 5-step methodology to identify loop pairs (here, e.g., (B,C)) among 4 DNS servers (A,B,C,D).

semantically different discovery probes according to various
protocol aspects we find in their standards (e.g., RFCs). Fig-
ure 3 (a) provides a concrete example of discovery probes. For
all four DNS servers, we send hand-vetted discovery probes,
including DNS responses and DNS error messages. We will
outline the concrete discovery probes in Section 4.1. After
having crafted discovery probes for each of the analyzed
application-layer protocols, we then use an off-the-shelf scan-
ner to probe all servers of a given application-layer protocol.
We save the responses for further clustering (Section 3.5).

The design choice to manually create discovery probes has
pros and cons. Hand-vetted packets are inherently incomplete
and cannot trigger all possible responses. This implies that
we may underestimate the number of loop pairs we can find.
We try to mitigate this challenge by creating probes with large
semantic diversity, assisted by careful studies of the protocol
specifications. Then again, in our eyes, hand-vetted probes
are the most straightforward option to perform a large-scale
experiment in an ethical manner. For each protocol, we only
have around 30 hand-vetted discovery probes, which reduces
the load to each probed system and limits the potential side
effects on server stability during testing.

3.5 Response Clustering

In principle, each of the probed servers could respond to each
discovery probe with a unique packet, resulting in millions of

unique responses. As described in Section 3.2, to find poten-
tial loops, we need to send responses collected in Section 3.4
to all servers to learn servers’ response functions. Sending this
number of responses to each server is not scalable. We miti-
gate this scalability problem with an important observation.
Namely, groups of the millions of unique responses are se-
mantically the same; they are only syntactically different. For
example, if two DNS responses only differ by the transaction
ID header field, they should have the same effect. Grouping
semantically-equivalent responses reduces the loop search to
sending only a (few) representative(s) per group.

Thus, we cluster responses by abstracting away syntactic
differences. For each UDP protocol, we identify important
packet header fields and differentiate packets according to
these critical fields. Each response falls exactly in one re-
sponse cluster. Such a response cluster ci ∈C is defined by
several packet field values, where all packets in that response
cluster exhibit the same values. The detailed clustering and
critical field selection for each protocol is presented in Sec-
tion 4. As shown in Figure 3 (b), when clustering DNS re-
sponses, we group packets according to the flags field and
ignore syntactic differences such as TXID and IP addresses.

While clustering captures the behavior of most servers
well, we also observe certain response behaviors that are
not common among many probed hosts. As we are mainly
interested in larger loops, we only consider response clusters
with more than 10k unique hosts and ignore smaller ones.

3.6 Loop Probe

The clustered responses now help us to identify the servers’
response functions. That is, for each server S, we would like
to learn its mapping S(ci) = rsi for all ci ∈C. Note that the
response function operates on packets, and not on clusters.
Then again, packets within a cluster share the same semantics.
We thus sample five responses from each response cluster and
use them as probes for all servers, which approximates the
response function for each cluster instead of each packet.

We choose multiple instead of just one representative per
cluster to verify the clustering step. In principle, samples from
the same response cluster shall have the same effect. To verify
this, we measure how many servers respond to how many
probes of a given response cluster. If most servers respond
to all five samples, it suggests the clustering performs well,
and all samples indeed induce the same effect. Otherwise, we
adjust the clustering discriminators (e.g., packet fields, see
Section 3.5) and repeat the clustering and loop probing.

Note that the proposed approach only provides basic clus-
tering validation. Real servers may generate semantically dif-
ferent responses to all five samples, which can thus undermine
our validation. To improve the reliability of the verification ap-
proach, one can further check whether most servers generate
semantically same responses for five samples.

At the end of the loop probe phase, we use the same re-
sponse clustering methodology to group all responses to the
sampled loop probes. By doing this, we can approximate each
server’s response function for the known response clusters.

In the example from Figure 3 (c), we use sampled responses
from each response cluster to scan all servers again. After the
clustering of the scan result, we learn that when receiving a
packet from cluster c1, DNS server A sends a packet in cluster
c2, i.e., server A has response function A(c1) = c2.

3.7 Loop Graph and Loop Search

Now, we have gathered all essential ingredients — the servers’
response sets (Section 3.4) and response functions (Sec-
tion 3.6) — to identify loop pairs among the probed servers.
We encode this information in a directed graph where nodes
are response clusters ci and each edge ei = [ci,cm] is the set
of server IPs with response function F(ci) = cm. Then, we
conduct a depth-limited search to find possible cycles in the
graph. Each cycle indicates possible loops among servers. In-
tuitively, cycles correspond to paths that span one or multiple
response clusters between two alternating hosts.

Shorter cycles are easy to spot in the loop graph. When
the cycle is of length one — i.e., a single response payload
forms the loop — every IP involved in the edge can be paired
with other IPs on the same edge to form a loop pair. Consider
the example cycle {c1,c1} shown in Figure 3 (d). Servers B
and C on edge [c1,c1] form a loop pair, and an attacker can
trigger the loop by sending an IP-spoofed packet in cluster c1

from server B to server C. For cycles of length two, each IP
on one edge can form a loop pair with each IP on the other
edge. Consider the example cycle {c1,c2,c1} in Figure 3 (d).
By sending an IP-spoofed packet in cluster c1 from server C
to server A, an attacker can trigger a loop between server A
and server C, where A ∈ [c1,c2] and C ∈ [c2,c1].

However, significantly longer cycles are also possible. We
can generalize our cycle search to arbitrary cycle lengths. A
cycle of length n from server A to B exists if there is a path of n
edges alternating between A and B. We index edges involved
in such a cycle as e1,e2, · · ·,en. Server A where A∈ e1∩e3∩··
·∩en−1 (“odd edge indexes”) and server B where B∈ e2∩e4∩
· · ·∩en (“even edge indexes”) form a loop pair of cycle length
n. Consider the example cycle {c1,c2,c3,c4,c1} with n = 4 in
Figure 3 (d). Here, server A where A ∈ [c1,c2]∩ [c3,c4] forms
a loop pair with server D where D ∈ [c2,c3]∩ [c4,c1]. An
attacker can trigger a loop by sending an IP-spoofed packet,
e.g., of cluster c1 or c3 from server D to server A.

To find all potential loop pairs of a given protocol, we
perform an exhaustive path search up to cycle length n over
the protocol’s loop graph. For the protocols we studied, loop
graphs span 46–3,778 nodes. The complete search up to n = 4
terminates within 10 seconds (see Section 4). Our methodol-
ogy is thus systematic, scalable, and still reasonably complete
in identifying loop pairs for a given protocol.

3.8 Loop Verify

Finally, we verify the potential loop pairs to achieve two
goals. First, the potential loop pairs identified in the loop
graph are not necessarily vulnerable to abuse. For example,
servers could aggressively limit the number of requests per
IP address. In this case, a loop will stop automatically after
reaching the rate limit. Such defenses cannot be identified by
low-rate scans. Second, a final end-to-end attack verification
tests if our methodology for identifying loops is reasonable.

We thus propose a proxy to verify loop pairs probabilis-
tically. Figure 3 (d) illustrates the overall setup of the loop
verify proxy. For each cycle in the loop graph, we sample
a subset of loop pairs. The proxy serves as a person-in-the-
middle between each sampled loop pair. This way, we can
control the speed of the loop and stop it at any point, allowing
for tests that do not overload real systems. Next, for loop pairs
sampled from a certain cycle, e.g., {c1,c2,c1}, the proxy
chooses a packet from cluster c1 to initiate a loop. After the
initial packet, the proxy server passively waits and delegates
any packets between servers. Once the proxy observes suf-
ficiently many packets exchanged between a sampled loop
pair, we derive that the pair is actually vulnerable to a traffic
loop attack. The percentage of sampled pairs that succeed in
this final verification step helps approximate how many of the
potential loops are effective loops that attackers can abuse.

4 Evaluation

In this section, we follow the five-step approach described
in Section 3 to investigate loops in three protocols: DNS,
NTP, and TFTP. The list of servers running DNS and NTP is
provided by Shadowserver’s daily report. Since Shadowserver
only reports on IPv4 addresses, in this paper, we only find
loop pairs from IPv4 servers. All of the experiments were
performed from Jan 5 to Jan 10, 2024. In our evaluation,
we observed ≈140k DNS servers, 86k NTP servers, and 22k
TFTP servers that could potentially form loops.

Additionally, we investigated loops in six legacy protocols:
Active Users, Daytime, Time, QOTD, Echo, and Chargen, ob-
serving 124k servers that could potentially form loops. Finally,
we verify whether the IPs we found are actually vulnerable
to the loop attack by using a UDP proxy to simulate the loop
DoS attack. In the following, we present the loop identifica-
tion and verification for each protocol in more detail.

4.1 Discovery Probes
The aim of the discovery probes is to trigger diverse responses
from real servers. Ethically, we would like to design less
offensive probes and minimize the number of probes. For
each protocol, the discovery probes include both well-formed
payloads and mutated payloads. In this section, we describe
discovery probes designed for each protocol.

DNS DNS is used by various applications to, e.g., translate
domain names to IP addresses. In short, controlled by a series
of flags, DNS messages can be split into three major cate-
gories: query, response, and error. The DNS discovery probes
cover different types of DNS messages. In total, we prepared
25 DNS discovery probes.

First, we constructed nine query-based payloads. When
building query-based payloads, we first construct well-formed
DNS queries using different rd (recursion desired) flags.
When the rd flag is set, the server will attempt to resolve the
query recursively, which may thus trigger different responses.

Next, we constructed semantically invalid queries by mutat-
ing well-formed DNS queries. For example, we constructed a
DNS query payload where the question count field (qdcount)
is 1, but the payload does not have an actual question field.
We also constructed DNS query packets with mutated rcode
fields. Normally, a DNS query should use rcode 0, which sug-
gests no error. We instead replace the rcode with other known
(e.g., 2, which indicates server failure error) or random values.
We also mutate the opcode field of DNS query packets to
other unused values while the packet still preserves a legit
DNS query. In addition to building DNS packets with mu-
tated header flags, we also built packets with mutated question
fields. For example, we build DNS query packets asking for a
DNS record of unknown qtype 280 and unknown qclass 280
instead of querying for a common ’A’ record. Such mutated

DNS queries can trigger server failures or format errors and
thus enrich diversity.

Next, we constructed 11 response-based payloads. Similar
to constructed DNS queries, the 11 DNS responses also in-
clude well-formed and semantics-violating response payloads.
For example, in one of the responses, we set the question flag
(qr) to zero, which indicates the payload is expected to be a
DNS query, while the payload does include a well-formed an-
swer record. Except for mutating header fields such as opcode,
rcode, and ancount etc., we also built semantics-violating
response payloads by adding random bytes to the payload,
which can produce packets that cannot be successfully parsed.

Finally, we also include five well-formed error messages
with different error type fields (rcode), including format error,
server failure, not implemented, name error, and refused.

Note that the DNS discovery probes only cover basic DNS
features. In particular, we did not prepare probes using ex-
tended DNS, e.g., DNS cookie and DNSSEC.

NTP NTP is a UDP-based protocol that provides clock syn-
chronization between hosts in a network. NTP messages have
eight different modes, controlled by the mode field, including
reserved (mode 0), symmetric (mode 1, 2), client and server
(mode 3, 4), broadcast (mode 5), NTP control message (mode
6), and private reserved (mode 7) [35]. NTP has a dedicated
poll field that limits the interval between successive messages.
It is thus less likely that standard NTP messages cause loops
by successful requests. Consequently, when preparing the
discovery probes for NTP, we mainly focused on unexpected
NTP payloads that may trigger error messages from servers.

We constructed 30 such discovery probes, focusing on
four different NTP modes: server (5x), broadcast/multicast
(1x), NTP control messages (20x), and private reserved (4x).
For server mode, we built several well-formed NTP packets
with different stratum numbers (14-16) and KISS-O’-DEATH
packets1 with unregistered kiss codes. In principle, a server
shall not respond to these constructed requests; they should
only trigger responses from faulty implementations. In addi-
tion, we constructed one well-formed broadcast packet. Cor-
rectly implemented servers shall not respond to a broadcast
message from clients; thus, the discovery probe will only trig-
ger faulty servers. With respect to NTP control messages, we
first built seven NTP error messages with defined error_code
values (1 to 7) and also an NTP error message with an un-
defined error_code. Next, we constructed well-formed and
mutated non-error NTP control messages, such as write clock
variables and trap response messages. Finally, we constructed
a few mutated NTP packets of private reserved mode by com-
bining a well-formed NTP header with a dummy payload.

These four modes do not cover all NTP modes. In particular,
we ignored client mode requests as they will mostly trigger

1KISS-O’-DEATH packets are used by NTP servers to rate-limit the NTP
client’s requests, which would only affect our scanner at most.

successful responses. We also did not construct any discovery
probes of symmetric active or passive mode. In the symmetric
mode, peers in both active and passive modes can synchronize
the clock according to the received messages, which may
interfere with the normal operations of servers.

TFTP TFTP is a UDP-based file transfer protocol that al-
lows a client to read and write files on a remote host. TFTP
offers five message types: read and write request, ACK, error,
and data. According to RFC-1350 [42], upon receiving a re-
quest, a TFTP server chooses a transfer identifier (TID) from
0 to 65,535. In later communications, the server uses the TID
as its source port. However, despite the RFC specification of
using random source ports, some servers still use source port
69 to send a response. Because a TFTP server using random
ports is less likely to be involved in a loop, we instead focus
on those TFTP servers that use the fixed 69 port to send er-
ror messages. We designed 23 discovery probes covering all
these message types except for write request.

We prepared nine query message probes. We first included
well-formed read requests. Then, we also constructed read
requests with mutated filename and mode fields, e.g., with a
non-ASCII string mode field, which is non-compliant with
the RFC. For data messages, we prepared three probes. In
accordance with RFC-1350 [42], we built two well-formed
data messages of sizes 512 and 0 bytes, indicating the inter-
mediate transferring block and the last block, respectively.
For the third message, we constructed a data message larger
than 512 bytes, which is not allowed by the RFC. For ACK
messages, we prepared two probes: one with a proper index
field according to RFC-1350 [42] and one without. Finally,
we constructed nine error probes: eight with standardized
error codes and one with an unknown error code.

Note that TFTP requests may probe for specific files. If our
requests happen to match an existing file, the server may start
transferring the actual file content to us. To avoid such acci-
dental leaks, we used a dummy filename fJFJmcl.jieopg
in all query-based discovery probes. For a similar reason, we
refrained from constructing discovery probes of write query
type, as we may unintentionally create files on real servers.

Legacy Protocols We also include six legacy protocols
in our analysis: QOTD (RFC 865 [6]), Chargen (RFC 864
[3]), Echo (RFC 862 [5]), Time (RFC 868) [7], Daytime
(RFC 867) [4], and Active Users (RFC 866) [2]. Except for
Time, which requires the client to send an empty UDP data-
gram, all other protocols define that servers should reply to
arbitrarily-formatted requests. However, there is still a chance
that Time servers do not follow RFC strictly and accept a
non-empty UDP datagram. When receiving a UDP datagram,
Chargen, QOTD, and Echo servers will send random data, a
quote, or mirror the request, respectively. Time and Daytime
servers respond with the current time (and day), and Active

Users servers send a list of active system users. Thus, in prin-
ciple, any two servers running these legacy protocols can form
a loop pair. An attacker can initiate a loop by sending an arbi-
trary IP-spoofed UDP datagram to one of the servers. Thus,
for all six legacy protocols, we use the same discovery probe:
a UDP payload containing the single character ’a’. This way,
we learn the accessible servers running each protocol.

Sending Discovery Probes After defining the discovery
probes, we send them to servers of the respective protocols.
We got the list of seed server IPs running the tested protocols
from Shadowserver’s daily report. The daily report includes
2,009,205 IPs for DNS and 1,712,434 IPs for NTP. As dis-
cussed previously, for TFTP, we only focused on TFTP servers
that send error messages from port 69. Thus, instead of using
Shadowserver’s daily report, we performed a full IPv4 scan
and found 148,676 IPs for TFTP. For the six legacy protocols,
we performed a full IPv4 scan and found 3,238 Active Users
servers, 13,983 Daytime servers, 13,195 Time servers, 52,707
Echo servers, 22,576 Chargen servers, and 17,927 QOTD
servers. Since we use a non-empty UDP datagram as the dis-
covery probe for Time servers, the discovered servers would
accept a non-empty UDP datagram and are thus potentially
vulnerable to the loop attack. For each protocol, we then use
ZMap [48] to send the discovery probes to all seed servers
of the given protocol. For each host, we wait for (at least)
10 seconds before proceeding with the next probe to avoid
high query loads to real servers. We defer to Section 6 for a
detailed discussion of our scanning setup.

We received at least one reply from 1,366,247 (68%) DNS
servers, 1,626,754 (95%) NTP servers, and all 148,676 TFTP
servers. For DNS, the response rates are significantly lower
than for NTP. We speculate this is due to more aggressive IP
address churn among DNS servers. Previous research also
reported IP churn behavior for DNS servers, where the number
of accessible IP addresses dropped to 60% percent after one
day [29]. Similarly, Kührer et al. noted a significantly lower
churn rate for NTP compared to DNS (Table 3 in [31]). To
counter the IP address churn, we could perform full Internet
scans ourselves — while causing higher loads to the Internet.

4.2 Response Clustering
We now describe how we cluster responses for each protocol.

DNS We collected 327,841 unique DNS responses via the
discovery probes. We parsed each unique DNS payload ac-
cording to the DNS packet structure. In the packet, we con-
sidered the opcode field and the 8-bit flag field (QR, AA, TC,
RD, RA, Z) as important fields, and a payload is first catego-
rized using these fields. Second, if the payload was a DNS
response packet (QR flag is 1), we further categorized the
payload according to its rcode (response code) field. Third,
we categorized payloads according to the number of records

they contained, indicated by qdcount, ancount, nscount, and
arcount fields. These field values can range from 0 to 65,535,
so we created five categorization buckets of 0, 1, 2-256, 257-
8,192, and 8,193-65,535. To our surprise, when inspecting
collected responses, we found that some DNS servers sent a
DNS response packet where the question field domain name
did not match the domain name used in the discovery probes.
Thus, we also categorized payloads based on whether the
domain name in the QD or AN field matched the domain
name we used in the discovery probes. We ignored the trans-
action ID and IPs during clustering, as they cannot change
the semantics of a payload.

Among the collected responses, we also identified re-
sponses that cannot be parsed normally. However, such re-
sponses may still contain a complete or partial header. For
these responses, we first categorized them as abnormal re-
sponses and then attempt to parse the DNS header byte-by-
byte to the extent possible. The semi-parsed responses were
then categorized using the extracted header information.

After clustering, we identified 90 clusters with more than
10k unique servers sending corresponding responses.

NTP We collected 8,459,730 unique NTP responses, all of
which we attempted to parse. In the packet, we considered
LI (leap indicator), VN (version number), stratum, poll, and
mode as important fields. A payload would first be clustered
according to these fields. Then, packets that were NTP control
messages (mode 6) underwent further categorization. Unlike
normal NTP headers, control message headers contain R, E,
M flags, opcodes, and status fields — all of which we consid-
ered important categorization features. We ignored identifier,
authenticator, and timestamps fields, as they should not affect
the semantics of a packet.

Note that our NTP clustering approach only focused on
NTP control messages. Other types of NTP messages can
have more distinct fields. For example, NTP private reserved
mode messages contain additional error and request code
fields. By parsing NTP messages as common NTP headers
and extracting stratum, leap fields, etc., we may omit or mis-
interpret some of such distinct fields.

Overall, we identified 55 NTP clusters with more than 10k
unique servers sending corresponding responses.

TFTP We collected 533 unique responses from TFTP
servers. The majority of responses were different types of er-
ror messages. Thus, our clustering for TFTP payloads mainly
focused on the type of error. We first clustered the TFTP pay-
loads according to their opcode, and if the TFTP payload is of
error message type (opcode=0005), we further clustered them
according to the errorcode field. As we inspected malformed
error message responses from real servers, we categorized an
error message according to syntactic correctness. For exam-
ple, we clustered error messages by observing whether the
error message correctly ends with a single NULL byte.

With this approach, we found six clusters with more than
10k unique servers sending corresponding responses.

Legacy Protocols Given that legacy protocols reply to ar-
bitrary request payloads, we simply group all responses in a
single catch-all cluster.

4.3 Loop Probe
As described in Section 3.6, for each non-legacy protocol,
we sample five payloads per cluster and use ZMap to send
them to all servers. For DNS, NTP, and TFTP, the number of
sampled probes is 299, 248, and 18, respectively. This is less
than five times the number of clusters because some clusters
have fewer than five payloads. To further reduce the load
of these additional probes, we increased the cooldown time
between different probes per host to 15 seconds.

We then clustered the probed responses. To confirm the
effectiveness of our clustering approach, as introduced in
Section 3.6, we verified the number of IPs responding to
different numbers of sampled probes in the same cluster.

For TFTP, the clustering performed well, as all six clusters
had the majority of servers respond to all sampled payloads.

Regarding NTP, out of all 55 clusters, 44 clusters performed
well. We treated the 11 problematic clusters as follows. Seven
of them only received responses from less than a thousand
servers; we dropped these clusters directly. For the other four,
we also did not optimize the clustering as we found that these
clusters are not involved in any potential cycles anyway.

For DNS, out of all 90 clusters, 88 clusters performed well,
i.e., the majority of servers replied to all five sampled probes.
The two bad clusters are DNS response packets containing
a domain name that does not match the domain name we
used in the discovery probe. In the two bad clusters, probe
payloads containing graph.facebook.com trigger signifi-
cantly more servers’ responses than other sampled payloads.
To understand why, we investigated the collected responses
when using payloads containing graph.facebook.com. We
believe the responses were generated by censorship DNS mid-
dleboxes, as in the answer field, the domain is resolved to
a local IP 10.10.34.35. A previous report recognized such
responses as an attempt to block users’ access by Iran [20]. As
discussed in Section 3.6, we updated the clustering approach
introduced in the previous section. We removed sampled pay-
loads containing domain graph.facebook.com from the two
bad clusters and manually added them to two new clusters.

We do not consider loop probes for legacy protocols as we
expect identical behavior irrespective of the probes we send.

4.4 Loop Graph and Loop Search
So far, we gathered all the essential information to find po-
tential loop pairs among real servers. Figure 4 shows the
resulting loop graphs for DNS, NTP, and TFTP. Recall that

#5696

75.9kΔ

#6586

9.3k*

9.3k*

NTP

#3291

75.8kΔ

#4292

9.2k*

9.3k*

#6813

76.0kΔ

#6874

9.3k*

9.4k*

#3072

75.9kΔ

#1631

9.5k*

9.4k*

#538#605

#296

#303

#454

#535

97.8k⨁

M
id

d
leb

o
x Effect

DNS

#525

4.9k⊠

4.3k6.7k

4.9k⊠

14.2k◎

#56

#49 #50

#29

0.6k*

0.5k*
4.8k°

13.2kΔ

0.8k
4.2k°

12.7kΔ4.3k°

TFTP

#2

#485.0k◊

3.5k◊

13.1kΔ 0.5k*

#529

#455

#94

#630
#613

#914

14.2k◎

10.1k

5
.3

k°
1

.3
k

Δ

6.0k
1.3kΔ

#185

23.5k

0.5k◊

14.1k★ 5.2k 15.1k◎

14.6k◎

Figure 4: Loop Graph. Nodes in the graph represent payload clusters; Appendix B provides example payloads for several clusters.
The edge from a node #A to another node #B indicates hosts that would send a #B response when receiving a #A payload, where
the edge label is the number of servers with such behavior. For each protocol, edges labeled with the same symbols (*, ◦, }, M,
�,F, ♦,

⊕
) indicate that the majority of the server IPs (> 70%) corresponding to these edges overlap.

nodes represent cluster IDs and edges from cluster ci to clus-
ter cm are hosts with response function F(ci) = cm. To find
all possible loop pairs per protocol, we searched for cycles up
to length n = 4. When inspecting loops, we filtered out loops
having edges corresponding to less than 100 IP addresses. In
the following, we report on the loop pairs per protocol.

DNS For DNS, we identified 140,334 (10.2%) servers that
can be involved in a loop. In this section, we focus on 24
identified major cycles. In DNS, the two largest cycles we
identified, cycle {454, 535, 454} and cycle {454, 454}, affect
98,669 IPs. Recall from the previous section that the two
largest cycles are caused by the newly identified middlebox-
effect clusters (clusters 454 and 535).

In the two middlebox-related cycles, we found 89,040
(90.2%) affected IPs are from Iran, and 9,629 (9.8%) IPs
are from other countries, e.g., China, Indonesia, Russia, etc.
In particular, the number of affected Iranian IPs covers 93.1%
of all known Iranian open resolvers from Shadowserver’s
daily report. Since clusters 454 and 535 are both DNS re-
sponses that DNS servers shall not react to, the high IP affect
rate is a clear indicator that it is a nationwide reaction by
Iran’s middleboxes to inject DNS responses when observing
clusters 454 and 535 packets. However, we did not observe
the same behavior for affected IPs in other countries, though
some countries, e.g., China [23], are known for having DNS

censorship. In other words, affected IPs in other countries
are not necessarily due to country-level middleboxes. Instead,
vulnerable IPs outside of Iran are likely actual vulnerable
DNS resolvers. In the end, even if some of the identified IPs
are actual vulnerable DNS resolvers, they can still be paired
with middlebox-effect IPs in Iran to form loop pairs.

For cycle {454, 535, 454}, upon receiving a response packet
for a censored domain (e.g., graph.facebook.com) with many
NS records (cluster 535), middleboxes or servers on edge [535,
454] inject a response packet containing only the answer for
the censored domain (cluster 454). When other middleboxes
or vulnerable servers (on edge [454, 535]) observe a response
packet containing a censored domain, they instead inject a re-
sponse containing multiple NS records. For cycle {454, 454},
it appears that a short response for a censored domain would
again trigger middleboxes or vulnerable servers to inject re-
sponses for the censored domain. Previous research shed light
on weaponizing HTTP middleboxes in DDoS attacks [14]. We
show that the DNS middleboxes also have similar behavior
that attackers can abuse for loop DoS attacks.

Note that our measurement for DNS middlebox-related
loops has two limitations:

• Our scanner’s location can impact the number of identi-
fied loop pairs. In the two middlebox-related loops, the
majority of affected IPs are from Iran. These loops are
caused by Iran middleboxes’ reactions to DNS response

packets with a censored domain. According to previous
research [12,47], countries with DNS censorship tend to
deploy middleboxes in border ASes. Since our scanner
was located outside of Iran, when scanning open resolver
IPs in Iran, the probe (e.g., of type 454) would go through
border ASes and trigger middleboxes. However, when
pairing two IPs in Iran, as the DNS packet is never routed
to border ASes, the DNS middlebox would not inject
forged responses to cause loops. As a result, we might
overestimate the number of loop pairs for middlebox-
related loops whenever we pair two IPs in Iran. Having
said this, we can still pair vulnerable IPs in Iran with
vulnerable IPs in other countries, which would cross the
border ASes. When excluding Iranian-only pairs, we can
still form 811.15M loop pairs.

• Given that we used a list of open resolvers provided by
Shadowserver to perform the scan, we may also underes-
timate the number of affected IPs in middlebox-related
loops. In principle, when pairing with vulnerable hosts
in other countries, any Iranian IP can be used as a loop
host, as the censorship middlebox on the path will be
involved to inject responses. To show the potential un-
derestimation, we perform a preliminary experiment. We
picked three IPv4 blocks in Iran; each contains 65,536
IPs. Next, we send type 454 probes to all IPs in the three
blocks. In total, we received type 454 responses from
193,239 (98.3%) IPs. However, Shadowserver’s daily
report only contains 10,946 (5.6%) open resolver IPs in
the three IPv4 blocks.

Excluding the two middlebox-related loops, all other cy-
cles affect 56,239 IPs in total. Among non-middlebox-related
cycles, we observed server failure error message loops. When
servers involved in these cycles received a DNS server failure
response, they would reply with another DNS server failure
response to form a loop. Cycles {630, 630}, {303, 303}, and
{613, 613} are all loops caused by server failure error packets,
affecting 14.6k, 14.2k, and 14.2k servers, respectively. Server
failure responses in the three clusters (630, 303, 613) differ
by whether the server supports recursion or not (flag ra is 0 or
1) and whether the server failure response includes an answer
record. As shown in Figure 4, the majority of servers in these
three cycles therefore overlap, which is a strong indicator that
the problem is caused by shared faulty implementation that
misinterprets a server failure message.

Interestingly, we also observed many loops triggered by
DNS responses in cluster 455, i.e., common DNS responses
to the domain controlled by us. Such loops can be classified
into two categories. In the first category, a response to the
domain controlled by us triggers an error message, and then
the error message again results in a response to our controlled
domain. Cycles {455, 630, 455} and {455, 613, 455} are this
type of cycle, and they affect 15.0k and 6.6k IPs, respectively.

In the second category, a response to the domain controlled

by us triggers a well-formed response with slight differences
in flag fields, and the mutated response again triggers a re-
sponse to our controlled domain. Cycles {455, 94, 455}, {455,
185, 455}, {455, 914, 455}, and {455, 529, 455} are all loops
of this category. Compared to responses from cluster 455,
payloads from clusters 94, 185, and 914 only differ from clus-
ter 455 by rd (recursion desired), ra (recursion available), and
aa (authoritative answer) flags, while payloads from cluster
529 contain additional resource records and NS records.

For all cycles in the two categories, each has an edge [X,
455], where X ∈ {630, 613, 94, 185, 914, 529}. The majority
of servers on edge [X,455] overlap, which indicates a faulty
implementation used by servers that would accept and resolve
an incoming response packet.

In addition to the clusters introduced previously, there are
also several sets of IPs performing error message loops (e.g.,
{613, 630, 613}), legit response loops (e.g., {914, 94, 914}),
and error message to legit response loops (e.g.,{613, 914,
613}).

Finally, we also identified several self loop cycles {296,
296}, {538, 538}, {605, 605}, and {525, 525}. Clusters 296
and 605 are both format error messages, where they differ
by the ra (recursion available) flag. Clusters 538 and 525 are
legit DNS responses to our domain, where they differ by the
number of NS records in the DNS response.

NTP For NTP, we identified 12 cycles with 86,469 (5.3%)
hosts potentially affected. As discussed in Section 4.1, for
NTP, we expected to identify error message loops. As per our
expectation, all NTP cycles are error message loops. Shown
in Figure 4, NTP loops correspond to eight different clusters.
The eight clusters are all NTP payloads of mode 7 (private
reserved mode). Payloads of the eight clusters differ by the
NTP version (v2 or v3) field and the implementation field (the
poll field when parsed as an NTP header).

Shown in Figure 4, the same set of servers transform an
NTPv3 error message (clusters 5696, 3291, 6813, 3072) to an
NTPv2 error message (clusters 4292, 6874, 6586, 1631). Sim-
ilarly, there is also a set of servers that transform an NTPv2
error message to an NTPv3 message. This suggests that there
are sets of NTPv3 and NTPv2 servers running faulty software
that would reply to an error message. Indeed, CVE-2009-
3563 [38] describes an error message loop in ntpd [1], a
popular NTP server implementation. The CVE shows that be-
fore ntpd v4.2.6, an attacker can cause an error message loop
between ntpd servers using malformed mode 7 NTP packets.
Thus, we believe that some of the loops we identified could
be explained by outdated ntpd servers. The same set of faulty
NTPv3 servers and NTPv2 servers can also form a loop when
receiving an error message from a server running the same
version, e.g., cycle {5696, 5696}.

TFTP For TFTP, we identified 9 cycles with 22,518 (15.1%)
potentially affected hosts in total. These 9 cycles hint at faulty

servers that react to certain error messages and respond with
another error message. Although the TFTP standard explicitly
states that an error message “is not acknowledged,” we still
observed many TFTP servers diverging from this. In fact, all
9 TFTP cycles are error message loops.

As shown in plot Figure 4, TFTP loops are constructed
from six clusters. Clusters 56, 49, and 29 are error messages
of unknown transfer ID (error code 5), illegal TFTP operation
(error code 4), and not defined (error code 0) types. Cluster 50
is slightly different from cluster 49. It is also error messages
of illegal TFTP operation type; however, the messages feature
an additional NULL byte at the end. Similarly, cluster 48
is also an illegal TFTP operation error message, but it does
not end with a NULL byte. Different from other clusters,
cluster 2 is a TFTP message with opcode 0. Opcode 0 is not
specified in RFC [42]. However, as some TFTP payloads in
cluster 2 contain an “invalid request” message, we believe
these payloads are likewise error messages.

Legacy Protocols We omit the loop graphs and cycle
search for the legacy protocols. We assume that each server
of any legacy protocol can create a cycle with an arbitrary
other server of the same (or even another) protocol.

4.5 Geo-Distribution

Before probabilistically verifying the potential loop pairs, we
now provide a first analysis of ASes hosting potential loop-
ing servers. For all six non-legacy protocols, DNS, NTP, and
TFTP, we found thousands of affected ASes overall. Figure 5
summarizes the geographical and topological breakdown of
the affected servers for each non-legacy protocol.

.

DNS (2628 ASes)

DNS No Middlebox (2419 ASes)

NTP (4755 ASes)

TFTP (2308 ASes)

IR (63%)

CN (19%)

Other (10%)

RU (5%)

US (3%)

CN (46%)

Other (22%)

RU (13%)

IR (12%)

US (7%)

Other (46%)

US (20%)

RU (18%)

KR (13%)

FR (3%)

US (28%) Other (27%)
CN (21%) IN (16%)

KR (8%)

Firefox http://127.0.0.1:41493/

1 of 1 1/11/24, 09:17

Figure 5: AS and geo-distribution of vulnerable servers.

For DNS, Iran and China have the most vulnerable DNS
servers. The majority of affected IPs in Iran are involved
in middlebox-related cycles discussed previously. In Fig-
ure 5, we also provide the analysis result when excluding
the two middlebox-related cycles. When including or ex-
cluding middlebox-related cycles, AS TCI in Iran and AS

Chinanet-backbone host the most vulnerable DNS servers,
72,026 and 7,191 IPs, respectively.

Regarding NTP, the US, Russia, and Korea host most vul-
nerable NTP servers. In particular, AS Korea Telecom alone
hosts 5,018 affected NTP servers.

For TFTP, the US, China, and India are the top three sources
of affected servers. Out of all ASes, the AS Frontier-FRTR
hosts the most faulty TFTP servers (2,559).

4.6 End-to-End Loop Verification

In the loop graph, we identified potential cycles according to
the response functions of each server. Next, we verified these
loops in controlled end-to-end loop experiments following
the approach proposed in Section 3.8.

In the experiment, we used the proxy to verify 100 sampled
loop pairs from each cycle we identified. As one IP can be in-
volved in several cycles, the same IP can show up in different
sampled pairs. To avoid flooding real servers, we applied a
rate limit per IP instead of per loop pair. The rate limit used
by the proxy is 3 pps. To avoid sending too many packets to
the sampled servers, the proxy would stop delegating packets
once it found more than 25 packets sent between a loop pair.
Finally, we checked the number of sampled loop pairs in each
cycle that successfully reached a 25-packet loop.

Cycle Loop IPs Loop Pairs Success Rate

{1631, 1631} 9.5 k 45.02 M 94%
{4292, 4292} 9.2 k 42.46 M 94%
{6874, 6874} 9.3 k 42.82 M 96%
{6586, 6586} 9.3 k 42.79 M 93%
{3291, 3291} 75.8 k 2872.10 M 93%
{6813, 6813} 76.0 k 2886.59 M 93%
{5696, 5696} 75.9 k 2878.17 M 98%
{3072, 3072} 75.9 k 2884.01 M 97%

{3291, 4292, 3291} 84.7 k 703.83 M 99%
{5696, 6586, 5696} 84.7 k 704.59 M 94%
{6874, 6813, 6874} 84.7 k 709.85 M 94%
{3072, 1631, 3072} 85.4 k 714.40 M 93%

Overall (estim.) 82.3 k 3.47 B (avg) 95.2%

Table 1: NTP verification summary. For each cycle, we re-
ported the number of potentially affected IPs, pairs, and the
verification success rate. The last row (in bold) provides an
estimation for the total number of confirmed IPs and pairs
based on the weighted average of verification success rates.

In Table 1, Table 2, and Table 3, we provided the detailed
verification results for each cycle we identified for NTP, DNS,
and TFTP, respectively. For these three protocols, we per-
formed the proxy verification within approximately three
hours after the scanning. Overall, we found about 200k servers
that can be abused in loops, giving attackers the opportunity
to create billions of loop pairs.

For TFTP and NTP, the average verification rates were
84.5% and 95.2%, respectively. Combining the number of
affected IPs from the loop graphs, we estimate that 82,318
(5.1%) IPs and 3.47B pairs for NTP and 19,027 (12.8%) IPs
and 0.18B pairs for TFTP can be involved in a loop attack.

For DNS, we verified middlebox-related cycles2 and non-
middlebox-related cycles separately, and the verification suc-
cess rates were 75.6% and 65.5% respectively. We observed
that the verification success rates for some cycles, e.g., {538,
538}, {605, 605}, and {296, 296} are lower: 16%, 25%, and
24% respectively. In order to reason about this discrepancy,
we observed the number of packets sent between each sam-
pled loop pair. If we only observed zero or one packet among
a loop pair, it mostly suggested at least one server in the loop
pair was no longer accessible. Instead, if we observed more
than two packets (while less than 25 packets) between a loop
pair, the loop was mostly stopped because of the rate limit of
at least one server in the loop pair. Out of the 100 sampled
loop pairs, we found 83 failed pairs for cycle {538, 538}, 52
failed pairs for {605, 605}, and 42 failed pairs for {296, 296}
with less than two packets sent. Thus, the low verification
success rate for the three cycles was likely due to frequent IP
address churn. Note that our proxy server only passively dele-
gates packets while not verifying if the responses generated
by servers are of the expected types, thus non-deterministic
server behaviors can impact our verification. Indeed, a DNS
server may behave differently against the same payload dur-
ing the loop probe and the verification, e.g., due to caching.
One can tackle such non-determinism by precaching the re-
quested data or by performing the loop probe multiple times
to filter out servers with non-deterministic behaviors. Overall,
the verification success rate for DNS, including both non-
middlebox-related cycles and middlebox-related cycles, was
70.1%. According to the number of affected IPs reported by
the loop graph, we believe that 98,374 IPs (7.2%) and 1.01B
pairs for DNS can be involved in a loop attack.

For legacy protocols, any of the discovered servers can
be paired with others to form a loop pair. We thus sampled
and verified 1000 random host pairs for each legacy proto-
col. For legacy protocols, the proxy verification is performed
approximately 12 hours after the scanning. In Table 4 (see
Appendix A), we summarized the verification success rate
for the six legacy protocols: Active Users (67.5%), Daytime
(79.6%), Time (78.8%), Echo (83.8%), Chargen (40.3%), and
QOTD (87.8%). Of all legacy protocols, Chargen had the low-
est verification success rate. Similar to DNS, we found that
majority of failed pairs were caused by unreachable servers.

2As discussed in Section 4.4, when verifying middlebox-related cycles,
we only pair IPs from Iran with IPs from other countries.

5 Discussion

We now discuss important aspects with respect to how at-
tackers can accelerate loops or find cross-protocol loops, and
describe mitigation strategies for the identified vulnerabilities.

5.1 Self-Amplifying Loops

In our experiment, we found some servers, e.g., Chargen
(1.9k), sending more than one response upon receiving one
probe. The majority of these servers sent two to nine re-
sponses upon receiving a probe, while there were some servers
that sent dozens or even hundreds of responses. Such multi-
response behaviors can be caused by network issues or faulty
software. Either way, if such servers can be involved in a loop
pair, the number of parallel loops could grow exponentially.
Interestingly, 73.3% of these servers were concentrated in just
three ASes, which further increases the threat of a loop-based
DoS attack for the respective ASes.

5.2 Cross-Protocol Loops

The main focus of this work is on identifying loops among
servers running the same UDP-based application-layer pro-
tocol. Unfortunately, though, attackers can also trigger loops
across protocols. For example, DNS, NTP, TFTP, and other
protocols implement format error messages. When a server
receives a malformed request, it responds with a format error
message to notify the client or help debugging. However, for
two servers running different UDP protocols, they lack knowl-
edge of the packet format of each other. Thus, such format
error messages may enable cross-protocol loops.

We showcase such a cross-protocol loop as a concrete ex-
ample with TFTP and DNS. Because unexpected packets
from other protocols may crash server programs, we refrained
from using the same methodology to discover cross-protocol
loops among real servers. Instead, we emulated the cross-
protocol loop in a local environment. We set up a local DNS
server using bind9 [13] and a local TFTP server using erlang-
tftp [19]. To set up the TFTP server, we used the example
instruction in [19] to start a default TFTP server. For the DNS
server, we used the default configuration of bind9. By send-
ing a TFTP not defined error message to the DNS server, we
successfully caused a loop between the two servers. bind9
interprets the TFTP message as a malformed DNS packet
and replies with a format error message to the TFTP server.
Upon receiving the format error response, the TFTP server
finds the packet has an unknown error code and considers it
as a malformed TFTP packet. Thus, the TFTP server sends
a not defined error response to the DNS server and forms a
loop. In Section 4.4, we showed that DNS and TFTP servers
sending such messages are not uncommon, underlining that
cross-protocol are not only a theoretical threat.

The six legacy protocols explored in the paper can also par-
ticipate in cross-protocol loops. For example, a TFTP server
and a Chargen server can form a loop pair easily. The Chargen
server’s dummy response would trigger the TFTP server’s not
defined error, and the error message would again trigger the
Chargen server’s response to sustain the loop. We confirmed
such a loop is possible by using a local setup of erlang-tftp
and xinetd’s Chargen service [45], and we can form a loop by
sending a dummy UDP payload to the Chargen server.

5.3 Automating Discovery Probe Generation
In this paper, we provide a methodology of identifying
application-layer traffic loops. The discovery probe design
requires manual efforts, which can limit the number of identi-
fied loops. In this section, we briefly discuss potential ways
of automating the discovery probe generation. To automat-
ically generate mutated payloads, fuzzing is a viable ap-
proach. Fuzzing would thus provide an even more systematic
way to fully explore the threat landscape. However, fuzzing-
generated discovery probes would require additional checks
or strict restrictions to avoid crashing real servers. For exam-
ple, when the length is not restricted, fuzzing can generate a
long mutated payload, which is more likely to cause memory
corruption. Next, fuzzing would also likely generate many se-
mantically identical discovery probes. To reduce the number
of probes, one could use our proposed clustering methodology
to sample discovery probes from each cluster.

5.4 Loop Mitigation
We now discuss mitigation steps that developers and server
operators can take to reduce the risk of loops.

Do not respond to errors Most loops are caused by servers
reacting to error messages or responses from other servers. Ac-
cording to RFCs for all studied non-legacy protocols, a server
should not reply to any error messages or responses gener-
ated by other servers. Enforcing this recommendation would
mitigate the vast majority of loops. Recall that many loops
we identified share the same set of faulty servers. Hopefully,
we can eliminate a large number of loop pairs and vulnerable
hosts by patching these vulnerable servers.

Suppress errors While error messages are useful for de-
bugging and sometimes inherently important for protocols to
function correctly, they do increase chances of loops. Recall
the TFTP + DNS cross-protocol loop. When receiving a DNS
error message packet, a TFTP server generates an error mes-
sage in TFTP format, which is considered a malformed DNS
packet when received by a DNS server. As servers do not
know other protocols, cross-protocol loop attacks are rather
hard to mitigate. One effective mitigation is to make servers
stay silent when receiving “malformed” packets.

Rate limiting Servers can mitigate loops by applying rate
limits. When the number of packets among two victim servers
reaches the rate limit, the packet loop terminates. However,
rate limits cannot mitigate the loop attack completely. For
example, DNS resolutions can take a considerably long time,
which can help an attacker to evade rate limits. Furthermore,
rate limits may only degrade the packet loop but do not en-
tirely stop it. In fact, the attacker can periodically send the
loop-triggering payloads to victim servers to restart them.

Source port validation Loops always span two servers
and their corresponding UDP server ports (e.g., 53 for DNS).
Loops could be stopped if servers expect all benign requests
to come from different ports, e.g., out of the ephemeral client
UDP port range. This is an elegant and easy fix that likely
works for most clients. The same logic can be applied for
network-level filtering of attack traffic. That is, normally (at
least) one of the two UDP ports in a given UDP stream come
from the client-chosen ephemeral range. But note that this
solution might break the compatibility of some software. For
example, a popular NTP server software, ntpd [1], would, by
default, use source port 123 to send symmetric mode mes-
sages to other NTP servers. Legacy DNS servers may also
send requests from source port 53.

Quality of service To mitigate loops, network operators can
give less preference to abused protocols to drop attack packets
in case of network congestion. In particular, the UDP ports of
the legacy protocols can be assigned low QoS priority. Non-
legacy protocols (TFTP, DNS, NTP) instead require case-by-
case decisions to minimize interference with normal services.

6 Disclosure and Ethics

We now discuss our disclosure process and revisit the ethical
aspects of our methodology, experimental setup, and findings.

Disclosure We started the disclosure process of our work’s
findings in December 2023. Though we found loops in sev-
eral protocols, there is no easy way to learn the vulnerable
software and products that cause the loop behavior.

Fortunately, Shadowserver provided us with the fingerprints
of vulnerable hosts. In parallel, we also disclosed the list of
affected IPs to ASes. Some of the affected ASes provided
us with information on affected products and software. The
vulnerability is mostly caused by proprietary software used by
vendors. As of Feb 2024, several vendors confirmed loop vul-
nerabilities: Broadcom (DNS), Honeywell (NTP), Mikrotik
(TFTP), Brother (TFTP), and Microsoft (TFTP).

There are also end-of-life products from other vendors that
are likely affected. For example, Cisco 2800/2970 routers can
likely form an NTP loop, and Zyxel’s old firewall products,
e.g., ZyWall 2, is seemingly affected by a DNS loop.

Ethics We carefully designed our experiments according
to ethical principles. For each protocol, we used hand-vetted
discovery probes to minimize the probability of interfering
with real servers. During the scanning, we followed general
best practices [48] and also minimized the number of probes
to servers via clustering and applied rate limits to avoid caus-
ing noticeable network or computational loads. Although we
offered an opt-out option, we did not receive a single such
request throughout our experiments, which underlines the
low-rate and defensive nature of our scans.

7 Conclusion

We introduced a systematic approach for finding and verify-
ing application-layer packet loops among real servers. Such
loops can be abused in various attacks, e.g., link flooding and
server resource exhaustion, and only require a limited attacker
ability, i.e., to send IP-spoofed packets to initiate loops. These
loops are prevalent among network infrastructures, with our
work revealing billions of pairs that can be abused by attack-
ers. Empirically, we also find packet loops among servers
across protocols, which can affect even more real servers in
practice. We hope this work can raise developers’ and proto-
col designers’ awareness of packet loops and help in patching
vulnerable software and updating protocol standards.

Availability

Our project is available on https://github.com/cispa/l
oop-DoS.

References

[1] Ntpd - Network Time Protocol (NTP) Daemon. https:
//docs.ntpsec.org/latest/ntpd.html, accessed
on October 6, 2023.

[2] Active Users Protocol. RFC 866, May 1983.

[3] Character Generator Protocol. RFC 864, May 1983.

[4] Daytime Protocol. RFC 867, May 1983.

[5] Echo Protocol. RFC 862, May 1983.

[6] Quote of the Day Protocol. RFC 865, May 1983.

[7] Time Protocol. RFC 868, May 1983.

[8] Florian Adamsky, Syed Ali Khayam, Rudolf Jäger, and
Muttukrishnan Rajarajan. P2P File-Sharing in Hell:
Exploiting BitTorrent Vulnerabilities to Launch Dis-
tributed Reflective DoS Attacks. In USENIX Workshop
on Offensive Technologies, Washington, DC, USA, 2015.
https://www.usenix.org/conference/woot15/w

orkshop-program/presentation/p2p-file-shar
ing-hell-exploiting-bittorrent.

[9] Aflnet. AFLNet: A Greybox Fuzzer for Network Pro-
tocols. https://github.com/aflnet/aflnet, ac-
cessed on October 6, 2023.

[10] Marios Anagnostopoulos, Stavros Lagos, and Georgios
Kambourakis. Large-scale Empirical Evaluation of DNS
and SSDP Amplification Attacks. Journal of Informa-
tion Security and Applications, 66:103168, 2022.

[11] Anonymous. Operation Global blackout. https://pa
stebin.com/NKbnh8q8, accessed on October 6, 2023.

[12] Anonymous. Towards a Comprehensive Picture of the
Great Firewall’s DNS Censorship. In USENIX Work-
shop on Free and Open Communications on the Internet,
San Diego, CA, 2014. https://www.usenix.org/c
onference/foci14/workshop-program/presenta
tion/anonymous.

[13] Bind9. Bind9 - Debian Wiki. https://wiki.debian.
org/Bind9, accessed on October 6, 2023.

[14] Kevin Bock, Abdulrahman Alaraj, Yair Fax, Kyle Hur-
ley, Eric Wustrow, and Dave Levin. Weaponizing Mid-
dleboxes for TCP Reflected Amplification. In USENIX
Security Symposium, pages 3345–3361, Virtual Event,
2021. https://www.usenix.org/conference/usen
ixsecurity21/presentation/bock.

[15] Jonas Bushart and Christian Rossow. DNS Unchained:
Amplified Application-Layer DoS Attacks Against DNS
Authoritatives. In Research in Attacks, Intrusions,
and Defenses, pages 139–160, Heraklion, Crete, Greece,
2018. https://doi.org/10.1007/978-3-030-00
470-5_7.

[16] CERT. CERT Advisory CA-1996-01 UDP Port Denial-
of-Service Attack. https://vuls.cert.org/conf
luence/display/historical/CERT+Advisory+CA
-1996-01+UDP+Port+Denial-of-Service+Attack,
accessed on January 9, 2024.

[17] CERT. CERT Advisory CA-1996-21 TCP SYN Flood-
ing and IP Spoofing Attacks. https://vuls.cert.or
g/confluence/display/historical/CERT+Advis
ory+CA-1996-21+TCP+SYN+Flooding+and+IP+Spo
ofing+Attacks, accessed on October 6, 2023.

[18] Jianjun Chen, Xiaofeng Zheng, Hai-Xin Duan, Jinjin
Liang, Jian Jiang, Kang Li, Tao Wan, and Vern Pax-
son. Forwarding-Loop Attacks in Content Delivery
Networks. In Network and Distributed System Se-
curity Symposium, San Diego, California, USA, 2016.
https://www.ndss-symposium.org/wp-content/
uploads/2017/09/forwarding-loop-attacks-co
ntent-delivery-networks.pdf.

https://github.com/cispa/loop-DoS
https://github.com/cispa/loop-DoS
https://docs.ntpsec.org/latest/ntpd.html
https://docs.ntpsec.org/latest/ntpd.html
https://www.usenix.org/conference/woot15/workshop-program/presentation/p2p-file-sharing-hell-exploiting-bittorrent
https://www.usenix.org/conference/woot15/workshop-program/presentation/p2p-file-sharing-hell-exploiting-bittorrent
https://www.usenix.org/conference/woot15/workshop-program/presentation/p2p-file-sharing-hell-exploiting-bittorrent
https://github.com/aflnet/aflnet
https://pastebin.com/NKbnh8q8
https://pastebin.com/NKbnh8q8
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://wiki.debian.org/Bind9
https://wiki.debian.org/Bind9
https://www.usenix.org/conference/usenixsecurity21/presentation/bock
https://www.usenix.org/conference/usenixsecurity21/presentation/bock
https://doi.org/10.1007/978-3-030-00470-5_7
https://doi.org/10.1007/978-3-030-00470-5_7
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1996-01+UDP+Port+Denial-of-Service+Attack
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1996-01+UDP+Port+Denial-of-Service+Attack
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1996-01+UDP+Port+Denial-of-Service+Attack
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1996-21+TCP+SYN+Flooding+and+IP+Spoofing+Attacks
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1996-21+TCP+SYN+Flooding+and+IP+Spoofing+Attacks
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1996-21+TCP+SYN+Flooding+and+IP+Spoofing+Attacks
https://vuls.cert.org/confluence/display/historical/CERT+Advisory+CA-1996-21+TCP+SYN+Flooding+and+IP+Spoofing+Attacks
https://www.ndss-symposium.org/wp-content/uploads/2017/09/forwarding-loop-attacks-content-delivery-networks.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/forwarding-loop-attacks-content-delivery-networks.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/forwarding-loop-attacks-content-delivery-networks.pdf

[19] Erlang-tftp. Erlang-tftp Instructions. https://www.er
lang.org/docs/23/apps/tftp/getting_started
.html, accessed on October 6, 2023.

[20] Arturo Filastò, Maria Xynou, and Nima Fatemi2020-03-
04. Iran Temporarily Blocks the Farsi Language Edition
of Wikipedia. https://ooni.org/post/2020-iran-
blocks-farsi-wikipedia/, accessed on October 6,
2023.

[21] J. J. Garcia-Luna-Aceves. Eliminating Routing Loops
and Oscillations in BGP Using Total Ordering. In IEEE
Conference on Local Computer Networks, pages 9–17,
Edmonton, AB, Canada, 2022. https://doi.org/10
.1109/LCN53696.2022.9843706.

[22] João José Costa Gondim, Robson de Oliveira Al-
buquerque, Anderson Clayton Alves Nascimento,
Luis Javier García-Villalba, and Tai-Hoon Kim. A
Methodological Approach for Assessing Amplified Re-
flection Distributed Denial of Service on the Internet of
Things. Sensors, 16:1855, 2016.

[23] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub
Dalek, Jeffrey Knockel, Pellaeon Lin, Bill Marczak,
Masashi Crete-Nishihata, Phillipa Gill, and Michalis
Polychronakis. How Great is the Great Firewall? Mea-
suring China’s DNS Censorship. In USENIX Secu-
rity Symposium, pages 3381–3398, Virtual Event, 2021.
https://www.usenix.org/conference/usenixse
curity21/presentation/hoang.

[24] Mattijs Jonker, Alistair King, Johannes Krupp, Christian
Rossow, Anna Sperotto, and Alberto Dainotti. Millions
of Targets under Attack: a Macroscopic Characterization
of the DoS Ecosystem. In Internet Measurement Confer-
ence, pages 100–113, London, United Kingdom, 2017.
https://doi.org/10.1145/3131365.3131383.

[25] Min Suk Kang, Virgil D. Gligor, and Vyas Sekar.
SPIFFY: Inducing Cost-Detectability Tradeoffs for Per-
sistent Link-Flooding Attacks. In Network and Dis-
tributed System Security Symposium, San Diego, Cali-
fornia, USA, 2016. https://www.ndss-symposium
.org/wp-content/uploads/2017/09/spiffy-ind
ucing-cost-detectability-tradeoffs-persist
ent-link-flooding-attacks.pdf.

[26] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor.
The Crossfire Attack. In IEEE Symposium on Security
and Privacy, pages 127–141, Berkeley, CA, USA, 2013.
https://doi.org/10.1109/SP.2013.19.

[27] Daniel Kopp, Christoph Dietzel, and Oliver Hohlfeld.
DDoS Never Dies? An IXP Perspective on DDoS Am-
plification Attacks. In Passive and Active Measure-
ment, pages 284–301, Virtual Event, 2021. https:
//doi.org/10.1007/978-3-030-72582-2_17.

[28] Maciej Korczynski and Yevheniya Nosyk. Source Ad-
dress Validation. CoRR, abs/2301.09952, 2023.

[29] Johannes Krupp, Mohammad Karami, Christian Rossow,
Damon McCoy, and Michael Backes. Linking Amplifi-
cation DDoS Attacks to Booter Services. In Research in
Attacks, Intrusions, and Defenses, pages 427–449, At-
lanta, GA, USA, 2017. https://doi.org/10.1007/
978-3-319-66332-6_19.

[30] Jan Kucera, Ran Ben Basat, Mário Kuka, Gianni An-
tichi, Minlan Yu, and Michael Mitzenmacher. Detect-
ing Routing Loops in the Data Plane. In International
Conference on emerging Networking EXperiments and
Technologies, pages 466–473, Barcelona, Spain, 2020.
https://doi.org/10.1145/3386367.3431303.

[31] Marc Kührer, Thomas Hupperich, Christian Rossow, and
Thorsten Holz. Exit from Hell? Reducing the Impact
of Amplification DDoS Attacks. In USENIX Security
Symposium, pages 111–125, San Diego, CA, USA, 2014.
https://www.usenix.org/conference/usenixse
curity14/technical-sessions/presentation/k
uhrer.

[32] Soo Bum Lee, Min Suk Kang, and Virgil D. Gligor.
CoDef: Collaborative Defense against Large-Scale Link-
Flooding Attacks. In Conference on emerging Net-
working Experiments and Technologies, pages 417–428,
Santa Barbara, CA, USA, 2013. https://doi.org/10
.1145/2535372.2535398.

[33] Robert Lemos. Largest-Ever DDoS Campaign Demon-
strates Danger of New Attack Method. https://www.
eweek.com/security/largest-ever-ddos-campa
ign-demonstrates-danger-of-new-attack-meth
od/, accessed on October 6, 2023.

[34] Matthew J. Luckie, Robert Beverly, Ryan Koga, Ken
Keys, Joshua A. Kroll, and kc claffy. Network Hygiene,
Incentives, and Regulation: Deployment of Source Ad-
dress Validation in the Internet. In Lorenzo Caval-
laro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, Conference on Computer and Communi-
cations Security, pages 465–480, London, UK, 2019.
https://doi.org/10.1145/3319535.3354232.

[35] Jim Martin, Jack Burbank, William Kasch, and Profes-
sor David L. Mills. Network Time Protocol Version 4:
Protocol and Algorithms Specification. RFC 5905, June
2010.

[36] Giovane C. M. Moura, Sebastian Castro, John Heide-
mann, and Wes Hardaker. TsuNAME: Exploiting Mis-
configuration and Vulnerability to DDoS DNS. In ACM
Internet Measurement Conference, page 398–418, Vir-
tual Event, 2021. https://doi.org/10.1145/3487
552.3487824.

https://www.erlang.org/docs/23/apps/tftp/getting_started.html
https://www.erlang.org/docs/23/apps/tftp/getting_started.html
https://www.erlang.org/docs/23/apps/tftp/getting_started.html
https://ooni.org/post/2020-iran-blocks-farsi-wikipedia/
https://ooni.org/post/2020-iran-blocks-farsi-wikipedia/
https://doi.org/10.1109/LCN53696.2022.9843706
https://doi.org/10.1109/LCN53696.2022.9843706
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang
https://doi.org/10.1145/3131365.3131383
https://www.ndss-symposium.org/wp-content/uploads/2017/09/spiffy-inducing-cost-detectability-tradeoffs-persistent-link-flooding-attacks.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/spiffy-inducing-cost-detectability-tradeoffs-persistent-link-flooding-attacks.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/spiffy-inducing-cost-detectability-tradeoffs-persistent-link-flooding-attacks.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/spiffy-inducing-cost-detectability-tradeoffs-persistent-link-flooding-attacks.pdf
https://doi.org/10.1109/SP.2013.19
https://doi.org/10.1007/978-3-030-72582-2_17
https://doi.org/10.1007/978-3-030-72582-2_17
https://doi.org/10.1007/978-3-319-66332-6_19
https://doi.org/10.1007/978-3-319-66332-6_19
https://doi.org/10.1145/3386367.3431303
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kuhrer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kuhrer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kuhrer
https://doi.org/10.1145/2535372.2535398
https://doi.org/10.1145/2535372.2535398
https://www.eweek.com/security/largest-ever-ddos-campaign-demonstrates-danger-of-new-attack-method/
https://www.eweek.com/security/largest-ever-ddos-campaign-demonstrates-danger-of-new-attack-method/
https://www.eweek.com/security/largest-ever-ddos-campaign-demonstrates-danger-of-new-attack-method/
https://www.eweek.com/security/largest-ever-ddos-campaign-demonstrates-danger-of-new-attack-method/
https://doi.org/10.1145/3319535.3354232
https://doi.org/10.1145/3487552.3487824
https://doi.org/10.1145/3487552.3487824

[37] Yevheniya Nosyk, Maciej Korczynski, and Andrzej
Duda. Routing Loops as Mega Amplifiers for DNS-
Based DDoS Attacks. In Passive and Active Measure-
ment, pages 629–644, Virtual Event, 2022. https:
//doi.org/10.1007/978-3-030-98785-5_28.

[38] NVD. NVD - CVE-2009-3563. https://nvd.nist
.gov/vuln/detail/cve-2009-3563, accessed on
October 6, 2023.

[39] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick
Feamster, Nicholas Weaver, and Vern Paxson. Global
Measurement of DNS Manipulation. In USENIX
Security Symposium, pages 307–323, Vancouver, BC,
Canada, 2017. https://www.usenix.org/confere
nce/usenixsecurity17/technical-sessions/pr
esentation/pearce.

[40] Christian Rossow. Amplification Hell: Revisiting Net-
work Protocols for DDoS Abuse. In Network and Dis-
tributed System Security Symposium, San Diego, Cali-
fornia, USA, 2014. https://www.ndss-symposium
.org/wp-content/uploads/2017/09/01_5.pdf.

[41] João Luis Sobrinho, David Fialho, and Paulo Mateus.
Stabilizing BGP through Distributed Elimination of Re-
current Routing Loops. In IEEE International Confer-
ence on Network Protocols, pages 1–10, Toronto, ON,
Canada, 2017. https://doi.org/10.1109/ICNP.2
017.8117560.

[42] Dr. Karen R. Sollins. The TFTP Protocol (Revision 2).
RFC 1350, July 1992.

[43] Ahren Studer and Adrian Perrig. The Coremelt Attack.
In European Symposium on Research in Computer Se-
curity, pages 37–52, Saint-Malo, France, 2009. https:
//doi.org/10.1007/978-3-642-04444-1_3.

[44] Juan Wang, Ru Wen, Jiangqi Li, Fei Yan, Bo Zhao,
and Fajiang Yu. Detecting and Mitigating Target Link-
Flooding Attacks Using SDN. IEEE Transactions on
dependable and secure computing, 16:944–956, 2019.

[45] Xinetd. Xinetd Project. https://packages.ubuntu.
com/kinetic/xinetd, accessed on October 6, 2023.

[46] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple: A
Programmable, Decentralized Link-Flooding Defense
Against Adaptive Adversaries. In USENIX Security
Symposium, pages 3865–3881, Virtual Event, 2021. ht
tps://www.usenix.org/conference/usenixsecu
rity21/presentation/xing.

[47] Xueyang Xu, Z. Morley Mao, and J. Alex Halderman.
Internet Censorship in China: Where Does the Filtering
Occur? In Passive and Active Measurement, pages 133–
142, Berlin, Heidelberg, 2011. https://doi.org/10
.1007/978-3-642-19260-9_14.

[48] ZMap. ZMap. https://github.com/zmap/zmap,
accessed on October 6, 2023.

Appendices

A Loop Verification Results

Cycle Loop IPs Loop Pairs Success Rate

{454, 535, 454} 71.6 k 24.27 M 96%
{454, 454} 97.8 k 786.88 M 75%

Middlebox Loop (estim.) 74.6 k 0.61 B (avg) 75.6%

{613, 529, 613} 1.6 k 0.46 M 95%
{613, 455, 613} 6.6 k 6.79 M 70%
{613, 630, 613} 7.3 k 7.76 M 84%

{613, 613} 14.2 k 100.46 M 73%
{613, 914, 613} 15.5 k 8.46 M 80%

{538, 538} 4.3 k 9.08 M 16%
{605, 605} 6.7 k 22.35 M 25%

{455, 185, 455} 6.3 k 1.07 M 91%
{455, 529, 455} 5.0 k 1.76 M 97%
{455, 94, 455} 4.2 k 1.73 M 77%

{455, 455} 10.1 k 50.51 M 51%
{455, 630, 455} 15.0 k 48.25 M 88%
{455, 914, 455} 20.6 k 75.21 M 76%

{296, 296} 4.9 k 12.01 M 24%
{525, 525} 4.9 k 11.95 M 24%
{303, 303} 14.2 k 100.50 M 66%

{529, 914, 529} 15.9 k 5.47 M 83%
{914, 94, 914} 14.6 k 7.73 M 93%

{914, 914} 23.5 k 275.53M 64%
{630, 630} 14.6 k 107.08 M 71%
{185, 185} 15.1 k 113.77 M 63%

{94, 94} 5.2 k 13.52 M 47%

Non-Middlebox Loop (estim.) 36.8 k 0.43 B (avg) 65.5%

Overall (estim.) 98.4 k 1.01B (avg) 70.1%

Table 2: DNS Verification Summary

Cycle Loop IPs Loop Pairs Success Rate

{2, 2} 5.0 k 12.40 M 95%
{2, 29, 2} 16.6 k 45.46 M 81%
{48, 48} 0.5 k 0.13 M 100%
{56, 56} 0.6 k 0.17 M 100%

{49, 50, 49} 5.0 k 3.21 M 100%
{49, 49} 4.8 k 11.41 M 98%

{49, 29, 49} 17.0 k 54.09 M 85%
{50, 50} 0.5 k 0.13 M 100%
{29, 29} 13.2 k 87.29 M 82%

Overall (estim.) 19.0 k 0.18 B (avg) 84.5%

Table 3: TFTP Verfication Summary

https://doi.org/10.1007/978-3-030-98785-5_28
https://doi.org/10.1007/978-3-030-98785-5_28
https://nvd.nist.gov/vuln/detail/cve-2009-3563
https://nvd.nist.gov/vuln/detail/cve-2009-3563
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pearce
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pearce
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pearce
https://www.ndss-symposium.org/wp-content/uploads/2017/09/01_5.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/01_5.pdf
https://doi.org/10.1109/ICNP.2017.8117560
https://doi.org/10.1109/ICNP.2017.8117560
https://doi.org/10.1007/978-3-642-04444-1_3
https://doi.org/10.1007/978-3-642-04444-1_3
https://packages.ubuntu.com/kinetic/xinetd
https://packages.ubuntu.com/kinetic/xinetd
https://www.usenix.org/conference/usenixsecurity21/presentation/xing
https://www.usenix.org/conference/usenixsecurity21/presentation/xing
https://www.usenix.org/conference/usenixsecurity21/presentation/xing
https://doi.org/10.1007/978-3-642-19260-9_14
https://doi.org/10.1007/978-3-642-19260-9_14
https://github.com/zmap/zmap

Protocol Loop IPs Loop Pairs Success Rate

Active Users 3.2 k 5.24 M 67.5%
Daytime 14.0 k 97.76 M 79.6%

Time 13.2 k 87.05 M 78.8%
Echo 52.7 k 1388.99 M 83.8%

Chargen 22.6 k 254.83 M 40.3%
QOTD 17.9 k 160.68 M 87.8%

Overall (estim.) 96.5 k 1.56 B (avg) 78.1%

Table 4: Legacy Protocols Verification Summary

B Example Payloads

B.1 DNS

Cluster #296: <DNS txid qr=1 opcode=QUERY aa=0
tc=0 rd=1 ra=0 z=0 ad=0 cd=0 rcode=format-error
qdcount=1 ancount=1 nscount=0 arcount=0
qd=<DNSQR qname=’domain’ qtype=A qclass=IN |>
an=<DNSRR rrname=’domain’ type=A rclass=IN
ttl=65448 rdlen=4 rdata=ip |> ns=None ar=None
|>
Cluster #525: <DNS txid qr=1 opcode=QUERY aa=0
tc=0 rd=1 ra=1 z=0 ad=0 cd=0 rcode=ok qdcount=1
ancount=1 nscount=1 arcount=0 qd=<DNSQR
qname=’domain’ qtype=A qclass=IN |> an=<DNSRR
rrname=’domain’ type=A rclass=IN ttl=86400
rdlen=4 rdata=ip |> ns=<DNSRR rrname=’domain’
type=NS rclass=IN ttl=86400 rdlen=29
rdata=’ns_server’ |> ar=None |>
Cluster #529: <DNS txid qr=1 opcode=QUERY aa=0
tc=0 rd=1 ra=1 z=0 ad=0 cd=0 rcode=ok qdcount=1
ancount=1 nscount=1 arcount=1 qd=<DNSQR
qname=’domain’ qtype=A qclass=IN |> an=<DNSRR
rrname=’domain’ type=A rclass=IN ttl=86400
rdlen=4 rdata=ip |> ns=<DNSRR
rrname=’ns_server’ type=NS rclass=IN ttl=1800
rdlen=29 rdata=’ns_server’ |> ar=<DNSRR
rrname=’ns_server’ type=A rclass=IN ttl=1800
rdlen=4 rdata=ip |> |>
Cluster #455: <DNS txid qr=1 opcode=QUERY aa=0
tc=0 rd=1 ra=1 z=0 ad=0 cd=0 rcode=ok qdcount=1
ancount=1 nscount=0 arcount=0 qd=<DNSQR
qname=’domain’ qtype=A qclass=IN |> an=<DNSRR
rrname=’domain’ type=A rclass=IN ttl=86400
rdlen=4 rdata=ip |> ns=None ar=None |>
Cluster #630: <DNS txid qr=1 opcode=QUERY aa=0
tc=0 rd=1 ra=1 z=0 ad=0 cd=0
rcode=server-failure qdcount=1 ancount=1
nscount=0 arcount=0 qd=<DNSQR qname=’domain’
qtype=A qclass=IN |> an=<DNSRR rrname=’domain’
type=A rclass=IN ttl=86400 rdlen=4 rdata=ip |>
ns=None ar=None |>
Cluster #535: <DNS txid qr=1 opcode=QUERY aa=0

tc=0 rd=1 ra=1 z=0 ad=0 cd=0 rcode=ok qdcount=1
ancount=1 nscount=13 arcount=11 qd=<DNSQR
qname=’graph.facebook.com.’ qtype=A qclass=IN
|> an=<DNSRR rrname=’graph.facebook.com.’
type=A rclass=IN ttl=61 rdlen=4 rdata=ip |>
ns=<DNSRR rrname=’com.’ type=NS rclass=IN
ttl=16083 rdlen=20 rdata=’f.gtld-servers.net.’
more DNSRRs |»»»»»> |>
Cluster #454: <DNS txid qr=1 opcode=QUERY aa=0
tc=0 rd=1 ra=1 z=0 ad=0 cd=0 rcode=ok qdcount=1
ancount=1 nscount=0 arcount=0 qd=<DNSQR
qname=’graph.facebook.com.’ qtype=A qclass=IN
|> an=<DNSRR rrname=’graph.facebook.com.’
type=A rclass=IN ttl=60 rdlen=4 rdata=ip |>
ns=None ar=None |>

B.2 NTP

Cluster #5696: <NTPPrivate response=1 more=0
version=3 mode=7 auth=0 seq=0 implementation=32
err=incompatible implementation number
nb_items=0 mbz=0 data_item_size=0 |>
Cluster #3291: <NTPPrivate response=1 more=0
version=3 mode=7 auth=0 seq=0 implementation=26
err=incompatible implementation number
nb_items=0 mbz=0 data_item_size=0 |>
Cluster #6813: <NTPPrivate response=1 more=0
version=3 mode=7 auth=0 seq=0 implementation=10
err=incompatible implementation number
nb_items=0 mbz=0 data_item_size=0 |>
Cluster #3072: <NTPPrivate response=1 more=0
version=3 mode=7 auth=0 seq=0 implementation=6
err=incompatible implementation number
nb_items=0 mbz=0 data_item_size=0 |>

B.3 TFTP

Cluster #49: <TFTP op=ERROR |<TFTP_ERROR
errorcode=Illegal TFTP operation errormsg=’Bad
Filename’ |» with single NULL byte ending.
Cluster #29: <TFTP op=ERROR |<TFTP_ERROR
errorcode=Not defined errormsg=’Access
violation’ |» with single NULL byte ending.
Cluster #2: <TFTP op=0 |<Raw
load=’0x0003nameinvalid request’ |»
Cluster #56: <TFTP op=ERROR |<TFTP_ERROR
errorcode=Unknown transfer ID errormsg=’Illegal
TID’ |» with single NULL byte ending.

	Introduction
	Background and Related Work
	Methodology
	Loop DoS Problem Formulation
	Straw-Man Approach for Finding Loops
	Methodology Sketch
	Discovery Probes
	Response Clustering
	Loop Probe
	Loop Graph and Loop Search
	Loop Verify

	Evaluation
	Discovery Probes
	Response Clustering
	Loop Probe
	Loop Graph and Loop Search
	Geo-Distribution
	End-to-End Loop Verification

	Discussion
	Self-Amplifying Loops
	Cross-Protocol Loops
	Automating Discovery Probe Generation
	Loop Mitigation

	Disclosure and Ethics
	Conclusion
	Appendices
	Loop Verification Results
	Example Payloads
	DNS
	NTP
	TFTP

